Spaces:
Runtime error
Runtime error
File size: 8,901 Bytes
1b2a9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# Original code: https://github.com/dyhan0920/PyramidNet-PyTorch/blob/master/PyramidNet.py
import torch
import torch.nn as nn
import math
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
outchannel_ratio = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(inplanes)
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes)
self.bn3 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
out = self.bn1(x)
out = self.conv1(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn3(out)
if self.downsample is not None:
shortcut = self.downsample(x)
featuremap_size = shortcut.size()[2:4]
else:
shortcut = x
featuremap_size = out.size()[2:4]
batch_size = out.size()[0]
residual_channel = out.size()[1]
shortcut_channel = shortcut.size()[1]
if residual_channel != shortcut_channel:
padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0))
out += torch.cat((shortcut, padding), 1)
else:
out += shortcut
return out
class Bottleneck(nn.Module):
outchannel_ratio = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
super(Bottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(inplanes)
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, (planes), kernel_size=3, stride=stride, padding=1, bias=False, groups=1)
self.bn3 = nn.BatchNorm2d((planes))
self.conv3 = nn.Conv2d((planes), planes * Bottleneck.outchannel_ratio, kernel_size=1, bias=False)
self.bn4 = nn.BatchNorm2d(planes * Bottleneck.outchannel_ratio)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
out = self.bn1(x)
out = self.conv1(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn3(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn4(out)
if self.downsample is not None:
shortcut = self.downsample(x)
featuremap_size = shortcut.size()[2:4]
else:
shortcut = x
featuremap_size = out.size()[2:4]
batch_size = out.size()[0]
residual_channel = out.size()[1]
shortcut_channel = shortcut.size()[1]
if residual_channel != shortcut_channel:
padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0))
out += torch.cat((shortcut, padding), 1)
else:
out += shortcut
return out
class PyramidNet(nn.Module):
def __init__(self, dataset, depth, alpha, num_classes, bottleneck=False):
super(PyramidNet, self).__init__()
self.dataset = dataset
if self.dataset.startswith('cifar'):
self.inplanes = 16
if bottleneck == True:
n = int((depth - 2) / 9)
block = Bottleneck
else:
n = int((depth - 2) / 6)
block = BasicBlock
self.addrate = alpha / (3*n*1.0)
self.input_featuremap_dim = self.inplanes
self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim)
self.featuremap_dim = self.input_featuremap_dim
self.layer1 = self.pyramidal_make_layer(block, n)
self.layer2 = self.pyramidal_make_layer(block, n, stride=2)
self.layer3 = self.pyramidal_make_layer(block, n, stride=2)
self.final_featuremap_dim = self.input_featuremap_dim
self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim)
self.relu_final = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(8)
self.fc = nn.Linear(self.final_featuremap_dim, num_classes)
elif dataset == 'imagenet':
blocks ={18: BasicBlock, 34: BasicBlock, 50: Bottleneck, 101: Bottleneck, 152: Bottleneck, 200: Bottleneck}
layers ={18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3]}
if layers.get(depth) is None:
if bottleneck == True:
blocks[depth] = Bottleneck
temp_cfg = int((depth-2)/12)
else:
blocks[depth] = BasicBlock
temp_cfg = int((depth-2)/8)
layers[depth]= [temp_cfg, temp_cfg, temp_cfg, temp_cfg]
print('=> the layer configuration for each stage is set to', layers[depth])
self.inplanes = 64
self.addrate = alpha / (sum(layers[depth])*1.0)
self.input_featuremap_dim = self.inplanes
self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.featuremap_dim = self.input_featuremap_dim
self.layer1 = self.pyramidal_make_layer(blocks[depth], layers[depth][0])
self.layer2 = self.pyramidal_make_layer(blocks[depth], layers[depth][1], stride=2)
self.layer3 = self.pyramidal_make_layer(blocks[depth], layers[depth][2], stride=2)
self.layer4 = self.pyramidal_make_layer(blocks[depth], layers[depth][3], stride=2)
self.final_featuremap_dim = self.input_featuremap_dim
self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim)
self.relu_final = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(self.final_featuremap_dim, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def pyramidal_make_layer(self, block, block_depth, stride=1):
downsample = None
if stride != 1: # or self.inplanes != int(round(featuremap_dim_1st)) * block.outchannel_ratio:
downsample = nn.AvgPool2d((2,2), stride = (2, 2), ceil_mode=True)
layers = []
self.featuremap_dim = self.featuremap_dim + self.addrate
layers.append(block(self.input_featuremap_dim, int(round(self.featuremap_dim)), stride, downsample))
for i in range(1, block_depth):
temp_featuremap_dim = self.featuremap_dim + self.addrate
layers.append(block(int(round(self.featuremap_dim)) * block.outchannel_ratio, int(round(temp_featuremap_dim)), 1))
self.featuremap_dim = temp_featuremap_dim
self.input_featuremap_dim = int(round(self.featuremap_dim)) * block.outchannel_ratio
return nn.Sequential(*layers)
def forward(self, x):
if self.dataset == 'cifar10' or self.dataset == 'cifar100':
x = self.conv1(x)
x = self.bn1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.bn_final(x)
x = self.relu_final(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
elif self.dataset == 'imagenet':
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn_final(x)
x = self.relu_final(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
|