File size: 8,901 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Original code: https://github.com/dyhan0920/PyramidNet-PyTorch/blob/master/PyramidNet.py

import torch
import torch.nn as nn
import math

def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    outchannel_ratio = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.conv1 = conv3x3(inplanes, planes, stride)        
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes)
        self.bn3 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):

        out = self.bn1(x)
        out = self.conv1(out)        
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn3(out)
        if self.downsample is not None:
            shortcut = self.downsample(x)
            featuremap_size = shortcut.size()[2:4]
        else:
            shortcut = x
            featuremap_size = out.size()[2:4]

        batch_size = out.size()[0]
        residual_channel = out.size()[1]
        shortcut_channel = shortcut.size()[1]

        if residual_channel != shortcut_channel:
            padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0)) 
            out += torch.cat((shortcut, padding), 1)
        else:
            out += shortcut 

        return out


class Bottleneck(nn.Module):
    outchannel_ratio = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
        super(Bottleneck, self).__init__()
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, (planes), kernel_size=3, stride=stride, padding=1, bias=False, groups=1)
        self.bn3 = nn.BatchNorm2d((planes))
        self.conv3 = nn.Conv2d((planes), planes * Bottleneck.outchannel_ratio, kernel_size=1, bias=False)
        self.bn4 = nn.BatchNorm2d(planes * Bottleneck.outchannel_ratio)
        self.relu = nn.ReLU(inplace=True)
        
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):

        out = self.bn1(x)
        out = self.conv1(out)
        
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv2(out)
 
        out = self.bn3(out)
        out = self.relu(out)
        out = self.conv3(out)

        out = self.bn4(out)
        if self.downsample is not None:
            shortcut = self.downsample(x)
            featuremap_size = shortcut.size()[2:4]
        else:
            shortcut = x
            featuremap_size = out.size()[2:4]

        batch_size = out.size()[0]
        residual_channel = out.size()[1]
        shortcut_channel = shortcut.size()[1]

        if residual_channel != shortcut_channel:
            padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0)) 
            out += torch.cat((shortcut, padding), 1)
        else:
            out += shortcut 

        return out


class PyramidNet(nn.Module):
        
    def __init__(self, dataset, depth, alpha, num_classes, bottleneck=False):
        super(PyramidNet, self).__init__()   
        self.dataset = dataset
        if self.dataset.startswith('cifar'):
            self.inplanes = 16
            if bottleneck == True:
                n = int((depth - 2) / 9)
                block = Bottleneck
            else:
                n = int((depth - 2) / 6)
                block = BasicBlock

            self.addrate = alpha / (3*n*1.0)

            self.input_featuremap_dim = self.inplanes
            self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=3, stride=1, padding=1, bias=False)
            self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim)

            self.featuremap_dim = self.input_featuremap_dim 
            self.layer1 = self.pyramidal_make_layer(block, n)
            self.layer2 = self.pyramidal_make_layer(block, n, stride=2)
            self.layer3 = self.pyramidal_make_layer(block, n, stride=2)

            self.final_featuremap_dim = self.input_featuremap_dim
            self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim)
            self.relu_final = nn.ReLU(inplace=True)
            self.avgpool = nn.AvgPool2d(8)
            self.fc = nn.Linear(self.final_featuremap_dim, num_classes)

        elif dataset == 'imagenet':
            blocks ={18: BasicBlock, 34: BasicBlock, 50: Bottleneck, 101: Bottleneck, 152: Bottleneck, 200: Bottleneck}
            layers ={18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3]}

            if layers.get(depth) is None:
                if bottleneck == True:
                    blocks[depth] = Bottleneck
                    temp_cfg = int((depth-2)/12)
                else:
                    blocks[depth] = BasicBlock
                    temp_cfg = int((depth-2)/8)

                layers[depth]= [temp_cfg, temp_cfg, temp_cfg, temp_cfg]
                print('=> the layer configuration for each stage is set to', layers[depth])

            self.inplanes = 64            
            self.addrate = alpha / (sum(layers[depth])*1.0)

            self.input_featuremap_dim = self.inplanes
            self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=7, stride=2, padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim)
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

            self.featuremap_dim = self.input_featuremap_dim 
            self.layer1 = self.pyramidal_make_layer(blocks[depth], layers[depth][0])
            self.layer2 = self.pyramidal_make_layer(blocks[depth], layers[depth][1], stride=2)
            self.layer3 = self.pyramidal_make_layer(blocks[depth], layers[depth][2], stride=2)
            self.layer4 = self.pyramidal_make_layer(blocks[depth], layers[depth][3], stride=2)

            self.final_featuremap_dim = self.input_featuremap_dim
            self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim)
            self.relu_final = nn.ReLU(inplace=True)
            self.avgpool = nn.AvgPool2d(7) 
            self.fc = nn.Linear(self.final_featuremap_dim, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def pyramidal_make_layer(self, block, block_depth, stride=1):
        downsample = None
        if stride != 1: # or self.inplanes != int(round(featuremap_dim_1st)) * block.outchannel_ratio:
            downsample = nn.AvgPool2d((2,2), stride = (2, 2), ceil_mode=True)

        layers = []
        self.featuremap_dim = self.featuremap_dim + self.addrate
        layers.append(block(self.input_featuremap_dim, int(round(self.featuremap_dim)), stride, downsample))
        for i in range(1, block_depth):
            temp_featuremap_dim = self.featuremap_dim + self.addrate
            layers.append(block(int(round(self.featuremap_dim)) * block.outchannel_ratio, int(round(temp_featuremap_dim)), 1))
            self.featuremap_dim  = temp_featuremap_dim
        self.input_featuremap_dim = int(round(self.featuremap_dim)) * block.outchannel_ratio

        return nn.Sequential(*layers)

    def forward(self, x):
        if self.dataset == 'cifar10' or self.dataset == 'cifar100':
            x = self.conv1(x)
            x = self.bn1(x)
            
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)

            x = self.bn_final(x)
            x = self.relu_final(x)
            x = self.avgpool(x)
            x = x.view(x.size(0), -1)
            x = self.fc(x)

        elif self.dataset == 'imagenet':
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)

            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)

            x = self.bn_final(x)
            x = self.relu_final(x)
            x = self.avgpool(x)
            x = x.view(x.size(0), -1)
            x = self.fc(x)
    
        return x