File size: 9,012 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF

from .taming_blocks import Encoder
from .nnutils import SPADEResnetBlock, get_edges, initWave

from libs.nnutils import poolfeat, upfeat
from libs.utils import label2one_hot_torch

from swapae.models.networks.stylegan2_layers import ConvLayer
from torch_geometric.nn import GCNConv
from torch_geometric.utils import softmax
from .loss import styleLossMaskv3

class GCN(nn.Module):
    def __init__(self, n_cluster, temperature = 1, add_self_loops = True, hidden_dim = 256):
        super().__init__()
        self.gcnconv1 = GCNConv(hidden_dim, hidden_dim, add_self_loops = add_self_loops)
        self.gcnconv2 = GCNConv(hidden_dim, hidden_dim, add_self_loops = add_self_loops)
        self.pool1 = nn.Sequential(nn.Conv2d(hidden_dim, n_cluster, 3, 1, 1))
        self.temperature = temperature

    def compute_edge_score_softmax(self, raw_edge_score, edge_index, num_nodes):
        return softmax(raw_edge_score, edge_index[1], num_nodes=num_nodes)

    def compute_edge_weight(self, node_feature, edge_index):
        src_feat = torch.gather(node_feature, 0, edge_index[0].unsqueeze(1).repeat(1, node_feature.shape[1]))
        tgt_feat = torch.gather(node_feature, 0, edge_index[1].unsqueeze(1).repeat(1, node_feature.shape[1]))
        raw_edge_weight = nn.CosineSimilarity(dim=1, eps=1e-6)(src_feat, tgt_feat)
        edge_weight = self.compute_edge_score_softmax(raw_edge_weight, edge_index, node_feature.shape[0])
        return raw_edge_weight.squeeze(), edge_weight.squeeze()

    def forward(self, sp_code, slic, clustering = False):
        edges, aff = get_edges(torch.argmax(slic, dim = 1).unsqueeze(1), sp_code.shape[1])
        prop_code = []
        sp_assign = []
        edge_weights = []
        conv_feats = []
        for i in range(sp_code.shape[0]):
            # compute edge weight
            edge_index = edges[i]
            raw_edge_weight, edge_weight = self.compute_edge_weight(sp_code[i], edge_index)
            feat = self.gcnconv1(sp_code[i], edge_index, edge_weight = edge_weight)
            raw_edge_weight, edge_weight = self.compute_edge_weight(feat, edge_index)
            edge_weights.append(raw_edge_weight)
            feat = F.leaky_relu(feat, 0.2)
            feat = self.gcnconv2(feat, edge_index, edge_weight = edge_weight)

            # maybe clustering
            conv_feat = upfeat(feat, slic[i:i+1])
            conv_feats.append(conv_feat)
            if not clustering:
                feat = conv_feat
                pred_mask = slic[i:i+1]
            else:
                pred_mask = self.pool1(conv_feat)
                # enforce pixels belong to the same superpixel to have same grouping label
                pred_mask = upfeat(poolfeat(pred_mask, slic[i:i+1]), slic[i:i+1])
                s_ = F.softmax(pred_mask * self.temperature, dim = 1)

                # compute texture code w.r.t grouping
                pool_feat = poolfeat(conv_feat, s_, avg = True)
                # hard upsampling
                #hard_s_ = label2one_hot_torch(torch.argmax(s_, dim = 1).unsqueeze(1), C = s_.shape[1])
                feat = upfeat(pool_feat, s_)
                #feat = upfeat(pool_feat, hard_s_)

            prop_code.append(feat)
            sp_assign.append(pred_mask)
        prop_code = torch.cat(prop_code)
        conv_feats = torch.cat(conv_feats)
        return prop_code, torch.cat(sp_assign), conv_feats

class SPADEGenerator(nn.Module):
    def __init__(self, in_dim, hidden_dim):
        super().__init__()
        nf = hidden_dim // 16

        self.head_0 = SPADEResnetBlock(in_dim, 16 * nf)

        self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf)
        self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf)

        self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf)
        self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf)
        self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf)
        self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf)

        final_nc = nf

        self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1)

        self.up = nn.Upsample(scale_factor=2)

    def forward(self, sine_wave, texon):

        x = self.head_0(sine_wave, texon)

        x = self.up(x)
        x = self.G_middle_0(x, texon)
        x = self.G_middle_1(x, texon)

        x = self.up(x)
        x = self.up_0(x, texon)
        x = self.up(x)
        x = self.up_1(x, texon)
        #x = self.up(x)
        x = self.up_2(x, texon)
        #x = self.up(x)
        x = self.up_3(x, texon)

        x = self.conv_img(F.leaky_relu(x, 2e-1))
        return x

class Waver(nn.Module):
    def __init__(self, tex_code_dim, zPeriodic):
        super(Waver, self).__init__()
        K = tex_code_dim
        layers =  [nn.Conv2d(tex_code_dim, K, 1)]
        layers += [nn.ReLU(True)]
        layers += [nn.Conv2d(K, 2 * zPeriodic, 1)]
        self.learnedWN =  nn.Sequential(*layers)
        self.waveNumbers = initWave(zPeriodic)

    def forward(self, GLZ=None):
        return (self.waveNumbers.to(GLZ.device) + self.learnedWN(GLZ))

class AE(nn.Module):
    def __init__(self, args, **ignore_kwargs):
        super(AE, self).__init__()

        # encoder & decoder
        self.enc = Encoder(ch=64, out_ch=3, ch_mult=[1,2,4,8], num_res_blocks=1, attn_resolutions=[],
                           in_channels=3, resolution=args.crop_size, z_channels=args.hidden_dim, double_z=False)
        if args.dec_input_mode == 'sine_wave_noise':
            self.G = SPADEGenerator(args.spatial_code_dim * 2, args.hidden_dim)
        else:
            self.G = SPADEGenerator(args.spatial_code_dim, args.hidden_dim)

        self.add_module(
            "ToTexCode",
            nn.Sequential(
                ConvLayer(args.hidden_dim, args.hidden_dim, kernel_size=3, activate=True, bias=True),
                ConvLayer(args.hidden_dim, args.tex_code_dim, kernel_size=3, activate=True, bias=True),
                ConvLayer(args.tex_code_dim, args.hidden_dim, kernel_size=1, activate=False, bias=False)
            )
        )
        self.gcn = GCN(n_cluster = args.n_cluster, temperature = args.temperature, add_self_loops = (args.add_self_loops == 1), hidden_dim = args.hidden_dim)

        self.add_gcn_epoch = args.add_gcn_epoch
        self.add_clustering_epoch = args.add_clustering_epoch
        self.add_texture_epoch = args.add_texture_epoch

        self.patch_size = args.patch_size
        self.sine_wave_dim = args.spatial_code_dim

        # inpainting network
        self.learnedWN = Waver(args.hidden_dim, zPeriodic = args.spatial_code_dim)
        self.dec_input_mode = args.dec_input_mode
        self.style_loss = styleLossMaskv3(device = args.device)

        if args.sine_weight:
            if args.dec_input_mode == 'sine_wave_noise':
                self.add_module(
                    "ChannelWeight",
                    nn.Sequential(
                        ConvLayer(args.hidden_dim, args.hidden_dim//2, kernel_size=3, activate=True, bias=True, downsample=True),
                        ConvLayer(args.hidden_dim//2, args.hidden_dim//4, kernel_size=3, activate=True, bias=True, downsample=True),
                        ConvLayer(args.hidden_dim//4, args.spatial_code_dim*2, kernel_size=1, activate=False, bias=False, downsample=True)))
            else:
                self.add_module(
                    "ChannelWeight",
                    nn.Sequential(
                        ConvLayer(args.hidden_dim, args.hidden_dim//2, kernel_size=3, activate=True, bias=True, downsample=True),
                        ConvLayer(args.hidden_dim//2, args.hidden_dim//4, kernel_size=3, activate=True, bias=True, downsample=True),
                        ConvLayer(args.hidden_dim//4, args.spatial_code_dim, kernel_size=1, activate=False, bias=False, downsample=True)))

    def get_sine_wave(self, GL, offset_mode = 'random'):
        img_size = GL.shape[-1] // 8
        GL = F.interpolate(GL, size = (img_size, img_size), mode = 'nearest')
        xv, yv = np.meshgrid(np.arange(img_size), np.arange(img_size),indexing='ij')
        c = torch.FloatTensor(np.concatenate([xv[np.newaxis], yv[np.newaxis]], 0)[np.newaxis])
        c = c.to(GL.device)
        # c: 1, 2, 28, 28
        c = c.repeat(GL.shape[0], self.sine_wave_dim, 1, 1)
        # c: 1, 64, 28, 28
        period = self.learnedWN(GL)
        # period: 1, 64, 28, 28
        raw = period * c
        if offset_mode == 'random':
            offset = torch.zeros((GL.shape[0], self.sine_wave_dim, 1, 1)).to(GL.device).uniform_(-1, 1) * 6.28
            offset = offset.repeat(1, 1, img_size, img_size)
            wave = torch.sin(raw[:, ::2] + raw[:, 1::2] + offset)
        elif offset_mode == 'rec':
            wave = torch.sin(raw[:, ::2] + raw[:, 1::2])
        return wave

    def forward(self, rgb_img, slic, epoch = 0, test_time = False, test = False, tex_idx = None):
        return