File size: 2,600 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""Module functions for the VQVAE
 - Adopted from https://github.com/ritheshkumar95/pytorch-vqvae
"""
import torch
from torch.autograd import Function

class VectorQuantization(Function):
    @staticmethod
    def forward(ctx, inputs, codebook):
        with torch.no_grad():
            embedding_size = codebook.size(1)
            inputs_size = inputs.size()
            inputs_flatten = inputs.view(-1, embedding_size)

            codebook_sqr = torch.sum(codebook ** 2, dim=1)
            inputs_sqr = torch.sum(inputs_flatten ** 2, dim=1, keepdim=True)

            # Compute the distances to the codebook
            distances = torch.addmm(codebook_sqr + inputs_sqr,
                inputs_flatten, codebook.t(), alpha=-2.0, beta=1.0)

            _, indices_flatten = torch.min(distances, dim=1)
            indices = indices_flatten.view(*inputs_size[:-1])
            ctx.mark_non_differentiable(indices)

            return indices

    @staticmethod
    def backward(ctx, grad_output):
        raise RuntimeError('Trying to call `.grad()` on graph containing '
            '`VectorQuantization`. The function `VectorQuantization` '
            'is not differentiable. Use `VectorQuantizationStraightThrough` '
            'if you want a straight-through estimator of the gradient.')

class VectorQuantizationStraightThrough(Function):
    @staticmethod
    def forward(ctx, inputs, codebook):
        indices = vq(inputs, codebook)
        indices_flatten = indices.view(-1)
        ctx.save_for_backward(indices_flatten, codebook)
        ctx.mark_non_differentiable(indices_flatten)

        codes_flatten = torch.index_select(codebook, dim=0,
            index=indices_flatten)
        codes = codes_flatten.view_as(inputs)

        return (codes, indices_flatten)

    @staticmethod
    def backward(ctx, grad_output, grad_indices):
        grad_inputs, grad_codebook = None, None

        if ctx.needs_input_grad[0]:
            # Straight-through estimator
            grad_inputs = grad_output.clone()
        if ctx.needs_input_grad[1]:
            # Gradient wrt. the codebook
            indices, codebook = ctx.saved_tensors
            embedding_size = codebook.size(1)

            grad_output_flatten = (grad_output.contiguous()
                                              .view(-1, embedding_size))
            grad_codebook = torch.zeros_like(codebook)
            grad_codebook.index_add_(0, indices, grad_output_flatten)

        return (grad_inputs, grad_codebook)

vq = VectorQuantization.apply
vq_st = VectorQuantizationStraightThrough.apply
__all__ = [vq, vq_st]