Spaces:
Runtime error
Runtime error
File size: 5,912 Bytes
1b2a9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import cv2
import torch
from PIL import Image
import os.path as osp
import numpy as np
from torch.utils import data
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import random
class RandomResizedCrop(object):
def __init__(self, N, res, scale=(0.5, 1.0)):
self.res = res
self.scale = scale
self.rscale = [np.random.uniform(*scale) for _ in range(N)]
self.rcrop = [(np.random.uniform(0, 1), np.random.uniform(0, 1)) for _ in range(N)]
def random_crop(self, idx, img):
ws, hs = self.rcrop[idx]
res1 = int(img.size(-1))
res2 = int(self.rscale[idx]*res1)
i1 = int(round((res1-res2)*ws))
j1 = int(round((res1-res2)*hs))
return img[:, :, i1:i1+res2, j1:j1+res2]
def __call__(self, indice, image):
new_image = []
res_tar = self.res // 4 if image.size(1) > 5 else self.res # View 1 or View 2?
for i, idx in enumerate(indice):
img = image[[i]]
img = self.random_crop(idx, img)
img = F.interpolate(img, res_tar, mode='bilinear', align_corners=False)
new_image.append(img)
new_image = torch.cat(new_image)
return new_image
class RandomVerticalFlip(object):
def __init__(self, N, p=0.5):
self.p_ref = p
self.plist = np.random.random_sample(N)
def __call__(self, indice, image):
I = np.nonzero(self.plist[indice] < self.p_ref)[0]
if len(image.size()) == 3:
image_t = image[I].flip([1])
else:
image_t = image[I].flip([2])
return torch.stack([image_t[np.where(I==i)[0][0]] if i in I else image[i] for i in range(image.size(0))])
class RandomHorizontalTensorFlip(object):
def __init__(self, N, p=0.5):
self.p_ref = p
self.plist = np.random.random_sample(N)
def __call__(self, indice, image, is_label=False):
I = np.nonzero(self.plist[indice] < self.p_ref)[0]
if len(image.size()) == 3:
image_t = image[I].flip([2])
else:
image_t = image[I].flip([3])
return torch.stack([image_t[np.where(I==i)[0][0]] if i in I else image[i] for i in range(image.size(0))])
class _Coco164kCuratedFew(data.Dataset):
"""Base class
This contains fields and methods common to all COCO 164k curated few datasets:
(curated) Coco164kFew_Stuff
(curated) Coco164kFew_Stuff_People
(curated) Coco164kFew_Stuff_Animals
(curated) Coco164kFew_Stuff_People_Animals
"""
def __init__(self, root, img_size, crop_size, split = "train2017"):
super(_Coco164kCuratedFew, self).__init__()
# work out name
self.split = split
self.root = root
self.include_things_labels = False # people
self.incl_animal_things = False # animals
version = 6
name = "Coco164kFew_Stuff"
if self.include_things_labels and self.incl_animal_things:
name += "_People_Animals"
elif self.include_things_labels:
name += "_People"
elif self.incl_animal_things:
name += "_Animals"
self.name = (name + "_%d" % version)
print("Specific type of _Coco164kCuratedFew dataset: %s" % self.name)
self._set_files()
self.transform = transforms.Compose([
transforms.RandomChoice([
transforms.ColorJitter(brightness=0.05),
transforms.ColorJitter(contrast=0.05),
transforms.ColorJitter(saturation=0.01),
transforms.ColorJitter(hue=0.01)]),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.Resize(int(img_size)),
transforms.RandomCrop(crop_size)])
N = len(self.files)
self.random_horizontal_flip = RandomHorizontalTensorFlip(N=N)
self.random_vertical_flip = RandomVerticalFlip(N=N)
self.random_resized_crop = RandomResizedCrop(N=N, res=self.res1, scale=self.scale)
def _set_files(self):
# Create data list by parsing the "images" folder
if self.split in ["train2017", "val2017"]:
file_list = osp.join(self.root, "curated", self.split, self.name + ".txt")
file_list = tuple(open(file_list, "r"))
file_list = [id_.rstrip() for id_ in file_list]
self.files = file_list
print("In total {} images.".format(len(self.files)))
else:
raise ValueError("Invalid split name: {}".format(self.split))
def __getitem__(self, index):
# same as _Coco164k
# Set paths
image_id = self.files[index]
image_path = osp.join(self.root, "images", self.split, image_id + ".jpg")
label_path = osp.join(self.root, "annotations", self.split,
image_id + ".png")
# Load an image
#image = cv2.imread(image_path, cv2.IMREAD_COLOR).astype(np.uint8)
ori_img = Image.open(image_path)
ori_img = self.transform(ori_img)
ori_img = np.array(ori_img)
if ori_img.ndim < 3:
ori_img = np.expand_dims(ori_img, axis=2).repeat(3, axis = 2)
ori_img = ori_img[:, :, :3]
ori_img = torch.from_numpy(ori_img).float().permute(2, 0, 1)
ori_img = ori_img / 255.0
#label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE).astype(np.int32)
#label[label == 255] = -1 # to be consistent with 10k
rets = []
rets.append(ori_img)
#rets.append(label)
return rets
def __len__(self):
return len(self.files)
|