Spaces:
Runtime error
Runtime error
File size: 12,487 Bytes
1d90a68 3bfa730 1d90a68 0c1cc93 1d90a68 5daa835 1d90a68 2fe6475 1d90a68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import time
import json
import base64
import argparse
import importlib
from glob import glob
from PIL import Image
from imageio import imsave
import torch
import torchvision.utils as vutils
import sys
sys.path.append(".")
import numpy as np
from libs.test_base import TesterBase
from libs.utils import colorEncode, label2one_hot_torch
from tqdm import tqdm
from libs.options import BaseOptions
import torch.nn.functional as F
from libs.nnutils import poolfeat, upfeat
import streamlit as st
from skimage.segmentation import slic
import torchvision.transforms.functional as TF
import torchvision.transforms as transforms
from st_clickable_images import clickable_images
args = BaseOptions().gather_options()
if args.img_path is not None:
args.exp_name = os.path.join(args.exp_name, args.img_path.split('/')[-1].split('.')[0])
args.batch_size = 1
args.data_path = "/home/xli/DATA/BSR_processed/train"
args.label_path = "/home/xli/DATA/BSR/BSDS500/data/groundTruth"
args.device = torch.device("cpu")
args.nsamples = 500
args.out_dir = os.path.join('cachedir', args.exp_name)
os.makedirs(args.out_dir, exist_ok=True)
args.global_code_ch = args.hidden_dim
args.netG_use_noise = True
args.test_time = (args.test_time == 1)
if not hasattr(args, 'tex_code_dim'):
args.tex_code_dim = 256
class Tester(TesterBase):
def define_model(self):
"""Define model
"""
args = self.args
module = importlib.import_module('models.week0417.{}'.format(args.model_name))
self.model = module.AE(args)
self.model.to(args.device)
self.model.eval()
return
def draw_color_seg(self, seg):
seg = seg.detach().cpu().numpy()
color_ = []
for i in range(seg.shape[0]):
colori = colorEncode(seg[i].squeeze())
colori = torch.from_numpy(colori / 255.0).float().permute(2, 0, 1)
color_.append(colori)
color_ = torch.stack(color_)
return color_
def to_pil(self, tensor):
return transforms.ToPILImage()(tensor.cpu().squeeze().clamp(0.0, 1.0)).convert("RGB")
def display(self):
with st.spinner('Running...'):
with torch.no_grad():
grouping_mask = self.model_forward(self.data, self.slic, return_type = 'grouping')
data = (self.data + 1) / 2.0
seg = grouping_mask.view(-1, 1, args.crop_size, args.crop_size)
color_vq = self.draw_color_seg(seg)
color_vq = color_vq * 0.8 + data.cpu() * 0.2
st.markdown('<p class="big-font">Given the image you chose, our model decomposes the image into ten texture segments, each depicts one kind of texture in the image.</p>', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("")
with col2:
st.markdown("Chosen image")
st.image(self.to_pil(data))
with col3:
st.markdown("Grouping mask")
st.image(self.to_pil(color_vq))
with col4:
st.markdown("")
seg_onehot = label2one_hot_torch(seg, C = 10)
parts = data.cpu() * seg_onehot.squeeze().unsqueeze(1)
st.markdown('<p class="big-font">We show all texture segments below. To synthesize an arbitrary-sized texture image from a texture segment, choose and click one of the texture segments below.</p>', unsafe_allow_html=True)
tmp_img_list = []
for i in range(parts.shape[0]):
part_img = self.to_pil(parts[i])
out_path = 'tmp/{}.png'.format(i)
part_img.save(out_path)
with open(out_path, "rb") as image:
encoded = base64.b64encode(image.read()).decode()
tmp_img_list.append(f"data:image/jpeg;base64,{encoded}")
tex_idx = clickable_images(
tmp_img_list,
titles=[f"Group #{str(i)}" for i in range(len(tmp_img_list))],
div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
img_style={"margin": "5px", "height": "150px"},
key=0
)
if tex_idx > -1:
with st.spinner('Running...'):
st.markdown('<p class="big-font">You can slide the bar below to set the size of the synthesized texture image.</p>', unsafe_allow_html=True)
tex_size = st.slider('', 0, 1000, 256)
tex_size = (tex_size // 8) * 8
with torch.no_grad():
tex = self.model_forward(self.data, self.slic, tex_idx = tex_idx, tex_size = tex_size, return_type = 'tex')
col1, col2, col3, col4 = st.columns([1, 1, 4, 1])
with col1:
st.markdown("")
with col2:
st.markdown("Chosen examplar segment")
st.image(self.to_pil(parts[tex_idx]))
with col3:
st.markdown("Synthesized texture image")
st.image(self.to_pil(tex))
with col4:
st.markdown("")
st.markdown('<p class="big-font">You can choose another image from the examplar images on the top and start again!</p>', unsafe_allow_html=True)
#torch.cuda.empty_cache()
"""
st.markdown("#### Texture Editing")
st.markdown("**Choose one texture segment to remove.**")
remove_idx = clickable_images(
tmp_img_list,
titles=[f"Group #{str(i)}" for i in range(len(tmp_img_list))],
div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
img_style={"margin": "5px", "height": "120px"},
key=1
)
st.markdown("**Choose one texture segment to fill in the missing pixels.**")
fill_idx = clickable_images(
tmp_img_list,
titles=[f"Group #{str(i)}" for i in range(len(tmp_img_list))],
div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
img_style={"margin": "5px", "height": "120px"},
key=2
)
rec = self.model_forward(self.data, self.slic, return_type = 'editing', fill_idx = fill_idx, remove_idx = remove_idx)
st.image(self.to_pil(rec))
"""
def model_forward(self, rgb_img, slic, epoch = 1000, test_time = False,
test = True, tex_idx = None, tex_size = 256,
return_type = 'tex', fill_idx = None, remove_idx = None):
args = self.args
B, _, imgH, imgW = rgb_img.shape
# Encoder: img (B, 3, H, W) -> feature (B, C, imgH//8, imgW//8)
conv_feat, _ = self.model.enc(rgb_img)
B, C, H, W = conv_feat.shape
# Texture code for each superpixel
tex_code = self.model.ToTexCode(conv_feat)
code = F.interpolate(tex_code, size = (imgH, imgW), mode = 'bilinear', align_corners = False)
pool_code = poolfeat(code, slic, avg = True)
prop_code, sp_assign, conv_feats = self.model.gcn(pool_code, slic, (args.add_clustering_epoch <= epoch))
softmax = F.softmax(sp_assign * args.temperature, dim = 1)
if return_type == 'grouping':
return torch.argmax(sp_assign.cpu(), dim = 1)
tex_seg = poolfeat(conv_feats, softmax, avg = True)
seg = label2one_hot_torch(torch.argmax(softmax, dim = 1).unsqueeze(1), C = softmax.shape[1])
if return_type == 'tex':
sampled_code = tex_seg[:, tex_idx, :]
rec_tex = sampled_code.view(1, -1, 1, 1).repeat(1, 1, tex_size, tex_size)
sine_wave = self.model.get_sine_wave(rec_tex, 'rec')
H = tex_size // 8; W = tex_size // 8
noise = torch.randn(B, self.model.sine_wave_dim, H, W).to(tex_code.device)
dec_input = torch.cat((sine_wave, noise), dim = 1)
weight = self.model.ChannelWeight(rec_tex)
weight = F.adaptive_avg_pool2d(weight, output_size = (1)).view(weight.shape[0], -1, 1, 1)
weight = torch.sigmoid(weight)
dec_input *= weight
rep_rec = self.model.G(dec_input, rec_tex)
rep_rec = (rep_rec + 1) / 2.0
return rep_rec
elif return_type == 'editing':
remove_mask = 0
fill_mask = 1
rec_tex = upfeat(tex_seg, seg)
remove_mask = seg[:, remove_idx:remove_idx+1]
fill_tex = tex_seg[:, fill_idx, :].view(1, -1, 1, 1).repeat(1, 1, imgH, imgW)
rec_tex = rec_tex * (1 - remove_mask) + fill_tex * remove_mask
sine_wave = self.model.get_sine_wave(rec_tex, 'rec')
H = imgH // 8; W = imgW // 8
noise = torch.randn(B, self.model.sine_wave_dim, H, W).to(tex_code.device)
dec_input = torch.cat((sine_wave, noise), dim = 1)
weight = self.model.ChannelWeight(rec_tex)
weight = F.adaptive_avg_pool2d(weight, output_size = (1)).view(weight.shape[0], -1, 1, 1)
weight = torch.sigmoid(weight)
dec_input *= weight
rep_rec = self.model.G(dec_input, rec_tex)
rep_rec = (rep_rec + 1) / 2.0
return rep_rec
def load_data(self, data_path):
rgb_img = Image.open(data_path)
crop_size = self.args.crop_size
i = 40; j = 40; h = crop_size; w = crop_size
rgb_img = TF.crop(rgb_img, i, j, h, w)
# compute superpixel
sp_num = 196
slic_i = slic(np.array(rgb_img), n_segments=sp_num, compactness=10, start_label=0, min_size_factor=0.3)
slic_i = torch.from_numpy(slic_i)
slic_i[slic_i >= sp_num] = sp_num - 1
oh = label2one_hot_torch(slic_i.unsqueeze(0).unsqueeze(0), C = sp_num).squeeze()
self.slic = oh.unsqueeze(0).to(args.device)
rgb_img = TF.to_tensor(rgb_img)
rgb_img = rgb_img.unsqueeze(0)
self.data = rgb_img.to(args.device) * 2 - 1
def load_model(self, model_path):
self.model = torch.nn.DataParallel(self.model)
cpk = torch.load(model_path, map_location=torch.device('cpu'))
saved_state_dict = cpk['model']
self.model.load_state_dict(saved_state_dict)
self.model = self.model.module
return
def test(self):
""" Test function
"""
#for iteration in tqdm(range(args.nsamples)):
self.test_step(0)
self.display(0, 'train')
def main():
#torch.cuda.empty_cache()
st.set_page_config(layout="wide")
st.markdown("""
<style>
.big-font {
font-size:30px !important;
}
</style>
""", unsafe_allow_html=True)
st.title("Scraping Textures from Natural Images for Synthesis and Editing")
#st.markdown("**In this demo, we show how to scrape textures from natural images for texture synthesis and editing.**")
st.markdown('<p class="big-font">In this demo, we show how to scrape textures from natural images for texture synthesis and editing.</p>', unsafe_allow_html=True)
st.markdown("## Texture synthesis")
st.markdown('<p class="big-font">Here we provide a set of example images, please choose and click one image to start.</p>', unsafe_allow_html=True)
img_list = glob(os.path.join("data/images/*.jpg"))
test_img_list = glob(os.path.join("data/test_images/*.jpg"))
img_list.extend(test_img_list)
byte_img_list = []
for img_path in img_list:
with open(img_path, "rb") as image:
encoded = base64.b64encode(image.read()).decode()
byte_img_list.append(f"data:image/jpeg;base64,{encoded}")
img_idx = clickable_images(
byte_img_list,
titles=[f"Group #{str(i)}" for i in range(len(byte_img_list))],
div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
img_style={"margin": "5px", "height": "150px"},
)
img_path = img_list[img_idx]
img_name = img_path.split("/")[-1]
args.pretrained_path = os.path.join("weights/{}/cpk.pth".format(img_name.split(".")[0]))
if img_idx > -1:
tester = Tester(args)
tester.define_model()
tester.load_data(img_path)
tester.load_model(args.pretrained_path)
tester.display()
if __name__ == '__main__':
os.system("pip install torch-geometric==1.7.2")
main()
|