File size: 4,667 Bytes
58e7ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import sys
from pathlib import Path

import cv2
import numpy as np
import torch

from detector import Detector
from recognizer import Recognizer
from checker import Checker
from utils import *

class Lottery:

    def __init__(
        self,
        detector = "./checkouts/detection.pt",
        recognizer = "./checkouts/recognition.pt",
        detect_conf_thres = 0.25, 
        detect_iou_thres = 0.45, 
        cert_ = "cert_.txt",
        timeout = 5,
        cuda = True
    ):
        self.detector_ = detector
        self.detect_conf_thres = detect_conf_thres
        self.detect_iou_thres = detect_iou_thres
        self.recognizer_ = recognizer
        self.cert_ = cert_
        self.timeout = timeout
        self.device = "cuda" if torch.cuda.is_available() and cuda else "cpu"

        self.init_detector()
        self.init_recognizer()
        self.init_checker()

    def init_detector(self):
        self.detector = Detector(self.detector_, self.detect_conf_thres, self.detect_iou_thres, self.device)

    def init_recognizer(self):
        self.recognizer = Recognizer(self.recognizer_, self.device)

    def init_checker(self):
        self.checker = Checker.from_file(self.cert_, timeout=self.timeout)

    def imread(self, img):
        if isinstance(img, str):
            p = Path(img)
            if not p.is_file():
                raise FileNotFoundError()
            p = str(p.absolute())
            img = imread(p)  # BGR
            assert img is not None, 'Cannot read image ' + str(p)
            return img
        elif isinstance(img, np.ndarray):
            return img[:, :, ::-1]  # rgb to bgr
        else:
            raise TypeError("Please input an image file.")

    def detect(self, img):
        detection = self.detector(img)
        if not detection:
            return 
        code, issue, numbers = detection
        return code, issue, numbers

    def recognize(self, img, code, issue, numbers, result_process=True):
        issue = crop(img, issue)[0]
        numbers = sort_box(numbers)
        numbers = crop(img, numbers)

        numbers.append(issue)

        recognition = self.recognizer(numbers)
        if not recognition:
            return

        issue, _ = recognition.pop()
        numbers = recognition

        numbers = [num[0] for num in numbers]

        if not result_process:
            return code, issue, numbers
        
        numbers = number_process(numbers, code)
        issue = issue_process(issue)

        return code, issue, numbers
        
    def check(self, code, issue, numbers):
        hits, winning = self.checker(code, issue, numbers)

        return code, issue, winning, numbers, hits

    def __call__(self, img, recognition_only=False):
        img = self.imread(img)
        detection = self.detect(img)
        if not detection:
            return

        recognition = self.recognize(img, *detection, result_process=True)
        if not recognition:
            return

        if recognition_only:
            return recognition

        return self.check(*recognition)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--detector", type=str, default="./checkouts/detection.pt", help="detector model file")
    parser.add_argument("--recognizer", type=str, default="./checkouts/recognition.pt", help="recognizer model file")
    parser.add_argument("--detect_conf_thres", type=float, default=0.25, help="detection confidence threshold")
    parser.add_argument("--detect_iou_thres", type=float, default=0.45, help="detection iou threshold")
    parser.add_argument("--cert_", type=str, default="./cert_.txt", help="API infomation")
    parser.add_argument("--timeout", type=int, default=5, help="timeout for waiting response")
    parser.add_argument("--cuda", action="store_true", help="use cuda or cpu")
    parser.add_argument("--recognition_only", action="store_true", help="return recognition results rather than checked results")
    parser.add_argument("image", type=str, help="image with lottery in it")

    opt = parser.parse_args()

    l = Lottery(
        detector=opt.detector,
        recognizer=opt.recognizer,
        detect_conf_thres=opt.detect_conf_thres,
        detect_iou_thres=opt.detect_iou_thres,
        cert_=opt.cert_,
        timeout=opt.timeout,
        cuda=opt.cuda
    )

    assert opt.image, "Please specify an image containing lottery."

    result = l(opt.image, opt.recognition_only)

    if not result:
        print("Sorry, something is wrong. You may try again.")
    else:
        result = Result.fromTuple(result)
        print(result)