Sun Jiao commited on
Commit
79b13b9
·
1 Parent(s): 14c8ef9
Files changed (1) hide show
  1. app.py +142 -0
app.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import math
3
+ import sqlite3
4
+
5
+ import streamlit as st
6
+ import torch
7
+ from PIL import Image
8
+ from huggingface_hub import hf_hub_download
9
+ from torchvision import transforms
10
+ from transformers import AutoModelForImageClassification
11
+
12
+ # Set the page title
13
+ st.title("Global Bird Classification App")
14
+
15
+ # Upload an image
16
+ uploaded_file = st.file_uploader("Please select an image", type=["jpg", "jpeg", "png"])
17
+
18
+ # Input latitude and longitude (optional)
19
+ latitude = st.number_input("Enter latitude (optional)", value=None, format="%f")
20
+ longitude = st.number_input("Enter longitude (optional)", value=None, format="%f")
21
+
22
+ lang = st.selectbox(
23
+ "Result Language",
24
+ options=[2, 1, 0],
25
+ format_func=lambda x: {
26
+ 2: "Latina (Nomen Scientificum)",
27
+ 1: "English (IOC 10.1)",
28
+ 0: "中文 (中国大陆)",
29
+ }[x]
30
+ )
31
+
32
+
33
+ classify_transforms = transforms.Compose([
34
+ transforms.Resize((224, 224)),
35
+ transforms.ToTensor(),
36
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
37
+ ])
38
+
39
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
40
+
41
+
42
+ # crop and classification
43
+ def classify_objects(classification_model, image, species_list):
44
+ input_tensor = classify_transforms(image).unsqueeze(0).to(device)
45
+ with torch.no_grad():
46
+ logits = classification_model(input_tensor)[0]
47
+ filtered = get_filtered_predictions(logits, species_list)
48
+ return softmax(filtered)
49
+
50
+
51
+ def softmax(tuples):
52
+ # `torch.nn.functional.softmax` requires the input to be `Tensor`, so I implemented it myself
53
+ values = [t[1] for t in tuples]
54
+ exp_values = [math.exp(v) for v in values]
55
+ sum_exp_values = sum(exp_values)
56
+ softmax_values = [ev / sum_exp_values for ev in exp_values]
57
+ updated_tuples = [(t[0], softmax_values[i]) for i, t in enumerate(tuples)]
58
+ updated_tuples.sort(key=lambda t: t[1], reverse=True)
59
+
60
+ return updated_tuples
61
+
62
+
63
+ def get_filtered_predictions(predictions: list[float], species_list: list[int]) -> list[tuple[int, float]]:
64
+ original = {index: value for index, value in enumerate(predictions)}
65
+
66
+ if species_list:
67
+ filtered_predictions = [(key, value) for key, value in original.items() if key in species_list]
68
+ else:
69
+ filtered_predictions = [(key, value) for key, value in original.items()]
70
+
71
+ return filtered_predictions
72
+
73
+
74
+ class DistributionDB:
75
+ def __init__(self, db_path):
76
+ self.con = sqlite3.connect(db_path)
77
+ self.cur = self.con.cursor()
78
+
79
+
80
+ def get_list(self, lat, lng) -> list:
81
+ self.cur.execute(f'''
82
+ SELECT m.cls
83
+ FROM distributions AS d
84
+ LEFT OUTER JOIN places AS p
85
+ ON p.worldid = d.worldid
86
+ LEFT OUTER JOIN sp_cls_map AS m
87
+ ON d.species = m.species
88
+ WHERE p.south <= {lat}
89
+ AND p.north >= {lat}
90
+ AND p.east >= {lng}
91
+ AND p.west <= {lng}
92
+ GROUP BY d.species, m.cls;
93
+ ''')
94
+
95
+ return [row[0] for row in self.cur]
96
+
97
+ def close(self):
98
+ self.cur.close()
99
+ self.con.close()
100
+
101
+
102
+ # If the user uploads an image
103
+ if uploaded_file is not None:
104
+ try:
105
+ sqlite_path = hf_hub_download(repo_id='sunjiao/osea', filename='avonet.db')
106
+ st.success(f"Successfully downloaded distribution database from Hugging Face Hub!")
107
+
108
+ label_map_path = hf_hub_download(repo_id='sunjiao/osea', filename='bird_info.json')
109
+ st.success(f"Successfully downloaded labels from Hugging Face Hub!")
110
+ except Exception as e:
111
+ st.error(f"Failed to download the file: {e}")
112
+ st.stop()
113
+
114
+ db = DistributionDB(sqlite_path)
115
+ species_list = db.get_list(latitude, longitude)
116
+ db.close()
117
+
118
+ # Open the image
119
+ image = Image.open(uploaded_file)
120
+
121
+ # Display the uploaded image
122
+ st.image(image, caption="Uploaded Image", use_container_width=True)
123
+
124
+ model = AutoModelForImageClassification.from_pretrained('sunjiao/osea')
125
+
126
+ results = classify_objects(model, image, species_list)
127
+
128
+ top3_results = results[:3]
129
+
130
+ with open(label_map_path, 'r') as f:
131
+ data = f.read()
132
+
133
+ bird_info = json.loads(data)
134
+
135
+ # Display the top 3 results and their probabilities
136
+ st.subheader("Classification Results (Top 3):")
137
+ for result in top3_results:
138
+ st.write(f"{bird_info[result[0]][lang]}: {result[1]:.4f}")
139
+
140
+ # Display latitude and longitude if provided
141
+ if latitude is not None and longitude is not None:
142
+ st.write(f"Entered Latitude: {latitude}, Longitude: {longitude}")