Spaces:
Sleeping
Sleeping
File size: 11,075 Bytes
7077f97 81379ec 7e297f6 0e2ff7b 44faf53 0e2ff7b 6a3132f 0e2ff7b 76fd838 6a3132f 0e2ff7b fe3a4fa 6a3132f 0e2ff7b 76fd838 0e2ff7b 6a3132f 76fd838 7077f97 0e2ff7b 7077f97 0e2ff7b 7077f97 0e2ff7b 74a4cc4 0e2ff7b 463559d d682964 7077f97 0e2ff7b fe3a4fa 11a490b 0e2ff7b 44faf53 0e2ff7b 1e1fdd9 0e2ff7b f2f526f 0e2ff7b fe3a4fa 0e2ff7b fe3a4fa 0e2ff7b fe3a4fa 0e2ff7b fe3a4fa 0e2ff7b fe3a4fa 0e2ff7b f2f526f 0e2ff7b fe3a4fa 0e2ff7b 7e297f6 0e2ff7b fe3a4fa 0e2ff7b d682964 0e2ff7b d682964 0e2ff7b d682964 0e2ff7b d682964 0e2ff7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# app.py
import streamlit as st
import torch
import random
import altair as alt
import pandas as pd
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import io
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from groq import Groq
# Initialize components
try:
groq_client = Groq(api_key=st.secrets["GROQ_API_KEY"])
model = AutoModelForSequenceClassification.from_pretrained("KevSun/Personality_LM", ignore_mismatched_sizes=True)
tokenizer = AutoTokenizer.from_pretrained("KevSun/Personality_LM")
except Exception as e:
st.error(f"Initialization error: {str(e)}")
st.stop()
# Configure Streamlit
st.set_page_config(page_title="π§ PersonaCraft", layout="wide", page_icon="π")
# Custom CSS
st.markdown("""
<style>
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
.quote-box {
animation: fadeIn 1s ease-in;
border-left: 5px solid #4CAF50;
padding: 20px;
margin: 20px 0;
background: #f8fff9;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.tip-card {
padding: 15px;
margin: 10px 0;
background: #fff3e0;
border-radius: 10px;
border: 1px solid #ffab40;
}
.social-post {
background: #e3f2fd;
padding: 20px;
border-radius: 15px;
margin: 15px 0;
}
.viz-box {
background: white;
padding: 20px;
border-radius: 15px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.nav-btn {
margin: 8px 0;
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Personality configuration
OCEAN_TRAITS = ["agreeableness", "openness", "conscientiousness", "extraversion", "neuroticism"]
QUESTION_BANK = [
{"text": "If your personality was a pizza topping, what would it be? π", "trait": "openness"},
{"text": "Describe your ideal alarm clock vs reality β°", "trait": "conscientiousness"},
{"text": "How would you survive a surprise party? π", "trait": "neuroticism"},
{"text": "What's your spirit animal during deadlines? πΎ", "trait": "agreeableness"},
{"text": "Plan a perfect day... for your nemesis! π", "trait": "extraversion"},
{"text": "If stress was a color, what's your current shade? π¨", "trait": "neuroticism"},
{"text": "What would your browser history say about you? π", "trait": "openness"},
{"text": "Describe your phone's home screen as a poem π±", "trait": "conscientiousness"},
{"text": "React to 'Your idea is interesting, but...' π‘", "trait": "agreeableness"},
{"text": "What's your superpower in awkward situations? π¦Έ", "trait": "extraversion"}
]
# Session state management
if 'started' not in st.session_state:
st.session_state.started = False
if 'current_q' not in st.session_state:
st.session_state.current_q = 0
if 'responses' not in st.session_state:
st.session_state.responses = []
if 'page' not in st.session_state:
st.session_state.page = "π Home"
# Functions
def generate_quote():
prompt = "Generate a fresh motivational quote about self-discovery with an emoji"
response = groq_client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[{"role": "user", "content": prompt}],
temperature=0.7
)
return response.choices[0].message.content
def analyze_personality(text):
encoded_input = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=64)
with torch.no_grad():
outputs = model(**encoded_input)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
return {trait: score.item() for trait, score in zip(OCEAN_TRAITS, predictions[0])}
def create_pdf_report(traits, quote):
buffer = io.BytesIO()
p = canvas.Canvas(buffer, pagesize=letter)
p.setFont("Helvetica-Bold", 16)
p.drawString(100, 750, "π PersonaCraft Psychological Report π")
p.setFont("Helvetica", 12)
y_position = 700
for trait, score in traits.items():
p.drawString(100, y_position, f"{trait.upper()}: {score:.2f}")
y_position -= 20
p.drawString(100, y_position-40, "Motivational Quote:")
p.drawString(100, y_position-60, quote)
p.save()
buffer.seek(0)
return buffer
def generate_social_post(platform, traits):
platform_formats = {
"LinkedIn": "professional tone with industry hashtags",
"Instagram": "visual storytelling with emojis",
"Facebook": "friendly community-oriented style",
"WhatsApp": "casual conversational format",
"Twitter": "concise with trending hashtags"
}
prompt = f"""Create a {platform} post about personal growth with these personality traits:
{traits}
Format: {platform_formats[platform]}
Include relevant emojis and keep under 280 characters."""
response = groq_client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[{"role": "user", "content": prompt}],
temperature=0.7
)
return response.choices[0].message.content
# Main UI
if not st.session_state.started:
st.markdown(f"""
<div class="quote-box">
<h2>π Welcome to PersonaCraft! π</h2>
<h3>{generate_quote()}</h3>
</div>
""", unsafe_allow_html=True)
if st.button("π Start Personality Journey!", use_container_width=True):
st.session_state.started = True
st.session_state.selected_questions = random.sample(QUESTION_BANK, 5)
st.rerun()
else:
# Sidebar navigation
with st.sidebar:
st.title("π§ Navigation")
st.markdown("---")
if st.button("π Personality Report", key="btn1", use_container_width=True,
help="View your detailed personality analysis"):
st.session_state.page = "π Personality Report"
if st.button("π Visual Analysis", key="btn2", use_container_width=True,
help="Explore visual representations of your personality"):
st.session_state.page = "π Visual Analysis"
if st.button("π± Social Media Post", key="btn3", use_container_width=True,
help="Generate personalized social media posts"):
st.session_state.page = "π± Social Media Post"
if st.button("π‘ Success Tips", key="btn4", use_container_width=True,
help="Discover personalized improvement tips"):
st.session_state.page = "π‘ Success Tips"
if st.button("π₯ Download Report", key="btn5", use_container_width=True,
help="Download your complete personality report"):
st.session_state.page = "π₯ Download Report"
# Question flow
if st.session_state.current_q < 5:
q = st.session_state.selected_questions[st.session_state.current_q]
st.progress(st.session_state.current_q/5, text="Assessment Progress")
with st.chat_message("assistant"):
st.markdown(f"### {q['text']}")
user_input = st.text_input("Your response:", key=f"q{st.session_state.current_q}")
if st.button("Next β‘οΈ"):
st.session_state.responses.append(user_input)
st.session_state.current_q += 1
st.rerun()
else:
# Process responses
traits = analyze_personality("\n".join(st.session_state.responses))
quote = generate_quote()
# Current page display
if st.session_state.page == "π Personality Report":
st.header("π Personality Breakdown")
cols = st.columns(5)
for i, (trait, score) in enumerate(traits.items()):
cols[i].metric(label=trait.upper(), value=f"{score:.2f}")
st.divider()
st.header("π Emotional Landscape")
emotion_data = pd.DataFrame({
"Trait": traits.keys(),
"Score": traits.values()
})
st.altair_chart(alt.Chart(emotion_data).mark_bar().encode(
x="Trait",
y="Score",
color=alt.Color("Trait", legend=None)
), use_container_width=True)
elif st.session_state.page == "π Visual Analysis":
st.header("π Personality Visualization")
# Fix radar chart encoding
radar_data = pd.DataFrame({
"Trait": list(traits.keys()),
"Score": list(traits.values()),
"Angle": [i*(360/5) for i in range(5)]
})
chart = alt.Chart(radar_data).mark_line(point=True).encode(
theta=alt.Theta("Angle:Q", stack=True),
radius=alt.Radius("Score:Q", scale=alt.Scale(type='linear', zero=True)),
color=alt.value("#4CAF50"),
tooltip=["Trait", "Score"]
).project(type='radial')
st.altair_chart(chart, use_container_width=True)
elif st.session_state.page == "π± Social Media Post":
st.header("π± Create Social Post")
platform = st.selectbox("Select Platform:", ["LinkedIn", "Instagram", "Facebook", "WhatsApp", "Twitter"])
if st.button("Generate Post π"):
post = generate_social_post(platform, traits)
st.session_state.post = post
if 'post' in st.session_state:
st.markdown(f"""
<div class="social-post">
<p>{st.session_state.post}</p>
</div>
""", unsafe_allow_html=True)
st.button("π Copy to Clipboard", on_click=lambda: st.write(st.session_state.post))
elif st.session_state.page == "π‘ Success Tips":
st.header("π‘ Personality Success Tips")
tips = [
"π± Practice daily self-reflection journaling",
"π€ Seek diverse social interactions weekly",
"π― Set SMART goals for personal development",
"π§βοΈ Incorporate mindfulness practices daily",
"π Engage in cross-disciplinary learning",
"π£οΈ Practice active listening techniques",
"π Embrace constructive feedback regularly",
"βοΈ Maintain work-life harmony",
"π Develop emotional granularity skills",
"π Challenge comfort zones monthly"
]
for tip in tips:
st.markdown(f"<div class='tip-card'>{tip}</div>", unsafe_allow_html=True)
elif st.session_state.page == "π₯ Download Report":
st.header("π₯ Download Complete Report")
pdf_buffer = create_pdf_report(traits, quote)
st.download_button(
"β¬οΈ Download PDF Report",
data=pdf_buffer,
file_name="personacraft_report.pdf",
mime="application/pdf",
use_container_width=True
) |