Spaces:
Sleeping
Sleeping
File size: 7,585 Bytes
7077f97 81379ec 7077f97 bd3a27a 11a490b 7077f97 11a490b 116c6ba 44faf53 6a3132f 76fd838 6a3132f 76fd838 6a3132f 706a81d 6a3132f 706a81d db0155e 6a3132f 76fd838 706a81d 6a3132f 76fd838 7077f97 11a490b 7077f97 11a490b 7077f97 44faf53 11a490b 7077f97 706a81d 11a490b 706a81d 44faf53 706a81d 11a490b f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 76fd838 f2f526f 706a81d f2f526f 706a81d f2f526f 76fd838 f2f526f 706a81d f2f526f 706a81d f2f526f 116c6ba 11a490b 44faf53 11a490b 44faf53 f2f526f 706a81d f2f526f 706a81d f2f526f 44faf53 706a81d 11a490b f2f526f 11a490b f2f526f 76fd838 f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d f2f526f 706a81d 76fd838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# app.py
import streamlit as st
from groq import Groq
from textblob import TextBlob
from transformers import pipeline
import re
import random
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import io
# Initialize components with proper error handling
try:
groq_client = Groq(api_key=st.secrets["GROQ_API_KEY"])
except KeyError:
st.error("GROQ_API_KEY missing in secrets! Add it in Hugging Face settings.")
st.stop()
# Initialize psychological models using verified public models
try:
# Personality insights using zero-shot classification
personality_analyzer = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli"
)
# Emotion detection model
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base"
)
except Exception as e:
st.error(f"Model loading error: {str(e)}")
st.stop()
# Configure Streamlit
st.set_page_config(page_title="π§ Mind Mapper", layout="wide", page_icon="π€")
# Custom CSS
st.markdown("""
<style>
@keyframes rainbow {
0% { color: #ff0000; }
20% { color: #ff8000; }
40% { color: #ffff00; }
60% { color: #00ff00; }
80% { color: #0000ff; }
100% { color: #ff00ff; }
}
.personality-title {
animation: rainbow 3s infinite;
font-size: 2.5em !important;
}
.progress-bar {
height: 25px;
border-radius: 15px;
background: linear-gradient(90deg, #FF6B6B 0%, #4ECDC4 100%);
}
</style>
""", unsafe_allow_html=True)
# Personality traits and questions
OCEAN_TRAITS = {
"openness": ["curious", "creative", "adventurous"],
"conscientiousness": ["organized", "responsible", "disciplined"],
"extraversion": ["outgoing", "energetic", "sociable"],
"agreeableness": ["friendly", "compassionate", "cooperative"],
"neuroticism": ["sensitive", "nervous", "emotional"]
}
QUESTION_BANK = [
{"text": "How do you typically approach new experiences? π", "trait": "openness"},
{"text": "Describe your ideal weekend vs reality ποΈ", "trait": "conscientiousness"},
{"text": "How do you recharge after social events? πͺ«", "trait": "extraversion"},
{"text": "Your reaction to someone disagreeing with you? π’", "trait": "agreeableness"},
{"text": "How do you handle unexpected changes? π", "trait": "neuroticism"}
]
def analyze_psychology(text):
"""Analyze personality traits using zero-shot classification"""
candidate_labels = list(OCEAN_TRAITS.keys())
result = personality_analyzer(text, candidate_labels, multi_label=True)
return {label: score for label, score in zip(result['labels'], result['scores'])}
def analyze_emotions(text):
"""Detect emotional tone"""
return emotion_classifier(text[:512])
def generate_quote(traits):
"""Generate personality-specific quote"""
prompt = f"""Create a motivational quote for someone with these traits:
{traits}
Make it inspirational and include an emoji."""
response = groq_client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[{"role": "user", "content": prompt}],
temperature=0.7
)
return response.choices[0].message.content
def generate_tips(traits):
"""Generate evidence-based psychological tips"""
tips = []
if traits.get('openness', 0) > 0.7:
tips.append("π¨ Try creative cross-training: Write a short story about your day")
if traits.get('neuroticism', 0) > 0.6:
tips.append("π§ Practice 4-7-8 breathing: Inhale 4s, hold 7s, exhale 8s")
return tips[:5]
def create_pdf_report(report):
"""Generate downloadable PDF report"""
buffer = io.BytesIO()
p = canvas.Canvas(buffer, pagesize=letter)
p.setFont("Helvetica-Bold", 16)
p.drawString(100, 750, "π Psychological Profile Report π")
p.setFont("Helvetica", 12)
y_position = 700
content = [
f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M')}",
"",
"Personality Traits:",
*[f"- {trait.upper()}: {score:.2f}" for trait, score in report['traits'].items()],
"",
"Emotional Analysis:",
*[f"- {emo['label']}: {emo['score']:.2f}" for emo in report['emotions']],
"",
"Personalized Quote:",
report['quote'],
"",
"Growth Tips:",
*[f"{i+1}. {tip}" for i, tip in enumerate(report['tips'])]
for line in content:
p.drawString(100, y_position, line)
y_position -= 15
p.save()
buffer.seek(0)
return buffer
# Session state management
if 'responses' not in st.session_state:
st.session_state.responses = []
if 'current_q' not in st.session_state:
st.session_state.current_q = 0
# Main UI
st.title("π§ Mind Mapper")
st.markdown("### Your Personal Psychology Assistant πβ¨")
# Progress tracker
progress = st.session_state.current_q / len(QUESTION_BANK)
st.markdown(f"""
<div style="background: #f0f2f6; border-radius: 15px; padding: 5px;">
<div class="progress-bar" style="width: {progress*100}%; height: 25px;"></div>
</div>
""", unsafe_allow_html=True)
# Question flow
if st.session_state.current_q < len(QUESTION_BANK):
q = QUESTION_BANK[st.session_state.current_q]
with st.chat_message("assistant"):
st.markdown(f"### {q['text']}")
user_input = st.text_input("Your response:", key=f"q{st.session_state.current_q}")
if st.button("Next β‘οΈ"):
st.session_state.responses.append(user_input)
st.session_state.current_q += 1
st.rerun()
else:
# Generate report
combined_text = "\n".join(st.session_state.responses)
traits = analyze_psychology(combined_text)
emotions = analyze_emotions(combined_text)
report = {
"traits": traits,
"emotions": emotions,
"quote": generate_quote(traits),
"tips": generate_tips(traits)
}
st.balloons()
st.markdown(f"## <div class='personality-title'>π Your Psychological Profile π</div>", unsafe_allow_html=True)
# Trait Visualization
with st.expander("π§© Personality Breakdown"):
cols = st.columns(5)
for i, (trait, score) in enumerate(report['traits'].items()):
cols[i].metric(label=trait.upper(), value=f"{score:.0%}")
# Emotional Analysis
with st.expander("π Emotional Landscape"):
emotion = max(report['emotions'], key=lambda x: x['score'])
st.markdown(f"**Dominant Emotion**: {emotion['label']} ({emotion['score']:.0%})")
st.progress(emotion['score'])
# Recommendations
col1, col2 = st.columns(2)
with col1:
st.markdown("### π¬ Personalized Wisdom")
st.success(f'"{report["quote"]}"')
with col2:
st.markdown("### π οΈ Actionable Tips")
for tip in report['tips']:
st.markdown(f"- {tip}")
# PDF Report
pdf_buffer = create_pdf_report(report)
st.download_button(
"π₯ Download Full Report",
data=pdf_buffer,
file_name="psych_profile.pdf",
mime="application/pdf"
)
# Sidebar
with st.sidebar:
st.markdown("## π How It Works")
st.markdown("""
1. Answer 5 psychology-based questions
2. Get instant personality analysis
3. Receive emotional insights
4. Download personalized report
**Science Behind It:**
- Zero-shot personality classification
- Emotion recognition (RoBERTa)
- Cognitive behavioral therapy principles
""") |