File size: 10,162 Bytes
7077f97
81379ec
7e297f6
0e2ff7b
 
 
44faf53
 
 
0e2ff7b
 
6a3132f
0e2ff7b
76fd838
6a3132f
0e2ff7b
fe3a4fa
6a3132f
0e2ff7b
76fd838
 
 
e47cb2b
6a3132f
76fd838
7077f97
 
0e2ff7b
 
 
7077f97
0e2ff7b
 
 
 
 
 
 
 
 
7077f97
0e2ff7b
44dca20
 
 
 
 
 
 
 
74a4cc4
0e2ff7b
 
 
 
463559d
d682964
 
 
 
4c7e5d8
 
 
 
 
44dca20
d682964
7077f97
 
 
0e2ff7b
fe3a4fa
11a490b
44dca20
 
 
 
 
 
 
 
 
 
44faf53
 
0e2ff7b
 
 
 
 
 
 
 
44dca20
1e1fdd9
44dca20
 
 
f2f526f
 
 
 
 
 
 
0e2ff7b
 
 
 
 
 
 
44dca20
fe3a4fa
 
 
34a83ca
fe3a4fa
 
 
0e2ff7b
 
 
fe3a4fa
44dca20
 
fe3a4fa
 
 
 
44dca20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f526f
0e2ff7b
 
 
44dca20
fe3a4fa
0e2ff7b
7e297f6
0e2ff7b
 
 
 
34a83ca
44dca20
0e2ff7b
 
fe3a4fa
4c7e5d8
0e2ff7b
 
 
 
 
 
 
d682964
4c7e5d8
44dca20
 
 
 
4c7e5d8
d682964
4c7e5d8
 
 
0e2ff7b
 
 
 
44dca20
0e2ff7b
 
 
 
 
 
 
 
 
 
 
 
44dca20
0e2ff7b
44dca20
 
4c7e5d8
0e2ff7b
 
 
 
 
44dca20
 
 
 
 
 
 
 
 
4c7e5d8
 
 
 
44dca20
0e2ff7b
44dca20
 
0e2ff7b
 
 
44dca20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7e5d8
44dca20
0e2ff7b
 
 
44dca20
0e2ff7b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# app.py
import streamlit as st
import torch
import random
import pandas as pd
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import io
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from groq import Groq

# Initialize components
try:
    groq_client = Groq(api_key=st.secrets["GROQ_API_KEY"])
    model = AutoModelForSequenceClassification.from_pretrained("KevSun/Personality_LM", ignore_mismatched_sizes=True)
    tokenizer = AutoTokenizer.from_pretrained("KevSun/Personality_LM")
except Exception as e:
    st.error(f"Initialization error: {str(e)}")
    st.stop()

# Configure Streamlit
st.set_page_config(page_title="🧠 Mind Mosaic chatbot", layout="wide", page_icon="πŸš€")

# Custom CSS
st.markdown("""
<style>
@keyframes fadeIn {
  from { opacity: 0; }
  to { opacity: 1; }
}

.quote-box {
    animation: fadeIn 1s ease-in;
    border-left: 5px solid #4CAF50;
    padding: 20px;
    margin: 20px 0;
    background: #f8fff9;
    border-radius: 10px;
    box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}

.tip-card {
    padding: 15px;
    margin: 10px 0;
    background: #fff3e0;
    border-radius: 10px;
    border: 1px solid #ffab40;
}

.social-post {
    background: #e3f2fd;
    padding: 20px;
    border-radius: 15px;
    margin: 15px 0;
}

.nav-btn {
    margin: 8px 0;
    width: 100%;
    transition: all 0.3s ease;
}

.nav-btn:hover {
    transform: scale(1.02);
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)

# Personality configuration
OCEAN_TRAITS = ["agreeableness", "openness", "conscientiousness", "extraversion", "neuroticism"]
QUESTION_BANK = [
    {"text": "If your personality was a pizza topping, what would you be? πŸ•", "trait": "openness"},
    {"text": "Describe your ideal morning vs reality β˜€οΈ", "trait": "conscientiousness"},
    {"text": "How would you survive a zombie apocalypse? 🧟", "trait": "neuroticism"},
    {"text": "What's your spirit animal in meetings? πŸ¦„", "trait": "agreeableness"},
    {"text": "Plan a perfect day for your arch-rival 😈", "trait": "extraversion"},
    {"text": "If stress was weather, what's your forecast? β›ˆοΈ", "trait": "neuroticism"},
    {"text": "What would your Netflix history say about you? 🎬", "trait": "openness"},
    {"text": "Describe your phone as a Shakespearean sonnet πŸ“±", "trait": "conscientiousness"},
    {"text": "React to 'We need to talk' πŸ’¬", "trait": "agreeableness"},
    {"text": "Your superhero name in awkward situations? 🦸", "trait": "extraversion"}
]

# Session state management
if 'started' not in st.session_state:
    st.session_state.started = False
if 'current_q' not in st.session_state:
    st.session_state.current_q = 0
if 'responses' not in st.session_state:
    st.session_state.responses = []
if 'page' not in st.session_state:
    st.session_state.page = "🏠 Home"

# Functions
def generate_quote():
    prompt = "Create an inspirational quote about self-improvement with 2 emojis"
    response = groq_client.chat.completions.create(
        model="mixtral-8x7b-32768",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.7
    )
    return response.choices[0].message.content

def analyze_personality(text):
    encoded_input = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=64)
    with torch.no_grad():
        outputs = model(**encoded_input)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    return {trait: score.item() for trait, score in zip(OCEAN_TRAITS, predictions[0])}

def create_pdf_report(traits, quote):
    buffer = io.BytesIO()
    p = canvas.Canvas(buffer, pagesize=letter)
    p.setFont("Helvetica-Bold", 16)
    p.drawString(100, 750, "🌟 Mind Mosaic chatbot Report 🌟")
    p.setFont("Helvetica", 12)
    
    y_position = 700
    for trait, score in traits.items():
        p.drawString(100, y_position, f"{trait.upper()}: {score:.2f}")
        y_position -= 20
    
    p.drawString(100, y_position-40, "Personalized Quote:")
    p.drawString(100, y_position-60, quote)
    p.save()
    buffer.seek(0)
    return buffer

def generate_social_post(platform, tone, traits):
    tone_instructions = {
        "funny": "Include humor and 3+ emojis. Make it lighthearted but not offensive",
        "serious": "Professional tone with inspirational message. Use 1-2 relevant emojis"
    }
    platform_formats = {
        "LinkedIn": "professional networking style",
        "Instagram": "visual storytelling with emojis",
        "Facebook": "community-oriented friendly tone",
        "WhatsApp": "casual conversational style",
        "Twitter": "concise with trending hashtags"
    }
    prompt = f"""Create a {tone} {platform} post about personal growth using these traits:
{traits}
Format: {platform_formats[platform]}
Tone: {tone_instructions[tone]}
Max length: 280 characters"""
    
    response = groq_client.chat.completions.create(
        model="mixtral-8x7b-32768",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.9 if tone == "funny" else 0.5
    )
    return response.choices[0].message.content

# Main UI
if not st.session_state.started:
    st.markdown(f"""
    <div class="quote-box">
        <h2>🌟 Welcome to Mind Mosaic chatbot 🌟</h2>
        <h3>{generate_quote()}</h3>
    </div>
    """, unsafe_allow_html=True)
    
    if st.button("πŸš€ Start Personality Analysis!", use_container_width=True):
        st.session_state.started = True
        st.session_state.selected_questions = random.sample(QUESTION_BANK, 5)
        st.rerun()
else:
    # Sidebar navigation
    with st.sidebar:
        st.title("🧭 Navigation")
        st.markdown("---")
        nav_options = {
            "πŸ“‹ Personality Report": "View detailed personality analysis",
            "πŸ“± Social Media Post": "Generate platform-specific posts",
            "πŸ’‘ Success Tips": "Get personalized improvement tips",
            "πŸ“₯ Download Report": "Download complete PDF report"
        }
        
        for option, help_text in nav_options.items():
            if st.button(option, key=option, use_container_width=True, help=help_text):
                st.session_state.page = option

    # Question flow
    if st.session_state.current_q < 5:
        q = st.session_state.selected_questions[st.session_state.current_q]
        st.progress(st.session_state.current_q/5, text="Assessment Progress")
        
        with st.chat_message("assistant"):
            st.markdown(f"### {q['text']}")
            user_input = st.text_input("Your response:", key=f"q{st.session_state.current_q}")
            
            if st.button("Next ➑️"):
                st.session_state.responses.append(user_input)
                st.session_state.current_q += 1
                st.rerun()
    else:
        # Process responses
        traits = analyze_personality("\n".join(st.session_state.responses))
        quote = generate_quote()
        
        # Current page display
        if st.session_state.page == "πŸ“‹ Personality Report":
            st.header("πŸ“Š Personality Breakdown")
            cols = st.columns(5)
            for i, (trait, score) in enumerate(traits.items()):
                cols[i].metric(label=trait.upper(), value=f"{score:.2f}")
            
            st.divider()
            st.header("🎭 Emotional Landscape")
            df = pd.DataFrame({
                "Trait": traits.keys(),
                "Score": traits.values()
            })
            st.bar_chart(df.set_index("Trait"))

        elif st.session_state.page == "πŸ“± Social Media Post":
            st.header("🎨 Create Social Post")
            col1, col2 = st.columns(2)
            with col1:
                platform = st.selectbox("Select Platform:", ["LinkedIn", "Instagram", "Facebook", "WhatsApp", "Twitter"])
            with col2:
                tone = st.radio("Post Tone:", ["πŸ˜„ Funny", "🎯 Serious"], horizontal=True)
            
            if st.button("✨ Generate Post", type="primary"):
                post = generate_social_post(platform, tone.split()[1].lower(), traits)
                st.session_state.post = post
            
            if 'post' in st.session_state:
                st.markdown(f"""
                <div class="social-post">
                    <p>{st.session_state.post}</p>
                </div>
                """, unsafe_allow_html=True)
                st.button("πŸ“‹ Copy Post", on_click=lambda: st.write(st.session_state.post))

        elif st.session_state.page == "πŸ’‘ Success Tips":
            st.header("πŸ’Ž Personality Success Tips")
            tips = [
                "πŸŒ… Morning reflection: Start each day with 5 minutes of self-reflection",
                "🀝 Weekly connection: Have one meaningful conversation with someone new",
                "🎯 SMART goals: Set weekly Specific-Measurable-Achievable-Relevant-Timebound goals",
                "🧠 Neuroplasticity practice: Learn one new skill each month",
                "πŸ“š Cross-training: Read outside your field 30 minutes daily",
                "πŸ’¬ Active listening: Practice repeating back what others say before responding",
                "πŸ”„ Feedback loop: Request constructive feedback weekly",
                "βš–οΈ Balance audit: Weekly review of work-life harmony",
                "😊 Emotional agility: Label emotions precisely throughout the day",
                "πŸš€ Growth challenges: Monthly comfort-zone expansion activity"
            ]
            for tip in tips:
                st.markdown(f"<div class='tip-card'>{tip}</div>", unsafe_allow_html=True)

        elif st.session_state.page == "πŸ“₯ Download Report":
            st.header("πŸ“„ Complete Report")
            pdf_buffer = create_pdf_report(traits, quote)
            st.download_button(
                "⬇️ Download PDF Report",
                data=pdf_buffer,
                file_name="personacraft_pro_report.pdf",
                mime="application/pdf",
                use_container_width=True
            )