import gradio as gr import numpy as np import cv2 from PIL import Image from ultralytics import YOLO # Define available YOLO models available_models = { "X-ray": YOLO("xray.pt"), "CT scan": YOLO("CT.pt"), "Ultrasound": YOLO("ultrasound.pt"), # Add more models as needed } # Create a function to perform image segmentation using the selected model def segment_image(input_image, selected_model): # Resize the input image to 255x255 img = np.array(input_image) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Perform object detection and segmentation using the selected model model = available_models[selected_model] results = model(img) mask = results[0].masks.data.numpy() target_height = img.shape[0] target_width = img.shape[1] # Resize the mask using OpenCV resized_mask = cv2.resize(mask[0], (target_width, target_height)) resized_mask = (resized_mask * 255).astype(np.uint8) # Create a copy of the original image overlay_image = img.copy() # Apply the resized mask to the overlay image overlay_image[resized_mask > 0] = [100, 0, 0] # Overlay in green # Convert the overlay image to PIL format overlay_pil = Image.fromarray(overlay_image) return overlay_pil # Create the Gradio interface with a dropdown for model selection iface = gr.Interface( fn=segment_image, inputs=[ gr.inputs.Image(type="pil", label="Upload an image"), gr.inputs.Dropdown( choices=list(available_models.keys()), label="Select YOLO Model", default="X-ray" ) ], outputs=gr.outputs.Image(type="numpy", label="Segmented Image"), title="YOLOv8 with SAM 😃", description='This software generates the segmentation mask for Aorta for Point of Care Ultrasound (POCUS) images' ) iface.launch()