Spaces:
Runtime error
Runtime error
Commit
Β·
3284380
1
Parent(s):
a5681c5
Update app.py
Browse files
app.py
CHANGED
@@ -13,15 +13,15 @@ available_models = {
|
|
13 |
# Add more models as needed
|
14 |
}
|
15 |
|
16 |
-
|
17 |
-
def segment_image(input_image):
|
18 |
# Resize the input image to 255x255
|
19 |
img = np.array(input_image)
|
20 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
21 |
-
|
|
|
22 |
# Perform object detection and segmentation
|
23 |
results = model(img)
|
24 |
-
mask =
|
25 |
target_height = img.shape[0]
|
26 |
target_width = img.shape[1]
|
27 |
|
@@ -52,7 +52,6 @@ def segment_image(input_image):
|
|
52 |
predictor = SamPredictor(sam)
|
53 |
predictor.set_image(img)
|
54 |
|
55 |
-
|
56 |
input_box = np.array(bbox)
|
57 |
masks_, _, _ = predictor.predict(
|
58 |
point_coords=None,
|
@@ -62,7 +61,7 @@ def segment_image(input_image):
|
|
62 |
|
63 |
fmask = masks_[0].astype(int)
|
64 |
|
65 |
-
resized_mask1 =cv2.resize(fmask, (target_width, target_height))
|
66 |
resized_mask1 = (resized_mask1 * 255).astype(np.uint8)
|
67 |
|
68 |
overlay_image1 = img.copy()
|
@@ -72,54 +71,25 @@ def segment_image(input_image):
|
|
72 |
# Convert the overlay image to PIL format
|
73 |
overlay_pil1 = Image.fromarray(overlay_image1)
|
74 |
|
75 |
-
|
76 |
return overlay_pil, overlay_pil1 # Return both overlay image and mask
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
# Create a function to perform image segmentation using the selected model
|
81 |
-
'''def segment_image(input_image, selected_model):
|
82 |
-
# Resize the input image to 255x255
|
83 |
-
img = np.array(input_image)
|
84 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
85 |
-
|
86 |
-
# Perform object detection and segmentation using the selected model
|
87 |
-
model = available_models[selected_model]
|
88 |
-
results = model(img)
|
89 |
-
mask = results[0].masks.data.numpy()
|
90 |
-
target_height = img.shape[0]
|
91 |
-
target_width = img.shape[1]
|
92 |
-
|
93 |
-
# Resize the mask using OpenCV
|
94 |
-
resized_mask = cv2.resize(mask[0], (target_width, target_height))
|
95 |
-
resized_mask = (resized_mask * 255).astype(np.uint8)
|
96 |
-
|
97 |
-
# Create a copy of the original image
|
98 |
-
overlay_image = img.copy()
|
99 |
-
|
100 |
-
# Apply the resized mask to the overlay image
|
101 |
-
overlay_image[resized_mask > 0] = [50, 0, 0] # Overlay in green
|
102 |
-
|
103 |
-
# Convert the overlay image to PIL format
|
104 |
-
overlay_pil = Image.fromarray(overlay_image)
|
105 |
-
|
106 |
-
return overlay_pil'''
|
107 |
-
|
108 |
# Create the Gradio interface with a dropdown for model selection
|
109 |
iface = gr.Interface(
|
110 |
fn=segment_image,
|
111 |
inputs=[
|
112 |
-
gr.
|
113 |
-
gr.
|
114 |
choices=list(available_models.keys()),
|
115 |
label="Select YOLO Model",
|
116 |
default="X-ray"
|
117 |
)
|
118 |
],
|
119 |
-
outputs=[
|
120 |
-
|
|
|
|
|
121 |
title="YOLOv8 with SAM π",
|
122 |
-
description='This software generates the segmentation mask
|
123 |
)
|
124 |
|
125 |
iface.launch()
|
|
|
13 |
# Add more models as needed
|
14 |
}
|
15 |
|
16 |
+
def segment_image(input_image, selected_model):
|
|
|
17 |
# Resize the input image to 255x255
|
18 |
img = np.array(input_image)
|
19 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
20 |
+
model = available_models[selected_model]
|
21 |
+
|
22 |
# Perform object detection and segmentation
|
23 |
results = model(img)
|
24 |
+
mask = results[0].masks.data.numpy()
|
25 |
target_height = img.shape[0]
|
26 |
target_width = img.shape[1]
|
27 |
|
|
|
52 |
predictor = SamPredictor(sam)
|
53 |
predictor.set_image(img)
|
54 |
|
|
|
55 |
input_box = np.array(bbox)
|
56 |
masks_, _, _ = predictor.predict(
|
57 |
point_coords=None,
|
|
|
61 |
|
62 |
fmask = masks_[0].astype(int)
|
63 |
|
64 |
+
resized_mask1 = cv2.resize(fmask, (target_width, target_height))
|
65 |
resized_mask1 = (resized_mask1 * 255).astype(np.uint8)
|
66 |
|
67 |
overlay_image1 = img.copy()
|
|
|
71 |
# Convert the overlay image to PIL format
|
72 |
overlay_pil1 = Image.fromarray(overlay_image1)
|
73 |
|
|
|
74 |
return overlay_pil, overlay_pil1 # Return both overlay image and mask
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Create the Gradio interface with a dropdown for model selection
|
77 |
iface = gr.Interface(
|
78 |
fn=segment_image,
|
79 |
inputs=[
|
80 |
+
gr.components.Image(type="pil", label="Upload an image"),
|
81 |
+
gr.components.Dropdown(
|
82 |
choices=list(available_models.keys()),
|
83 |
label="Select YOLO Model",
|
84 |
default="X-ray"
|
85 |
)
|
86 |
],
|
87 |
+
outputs=[
|
88 |
+
gr.components.Image(type="pil", label="Segmented Image"),
|
89 |
+
gr.components.Image(type="pil", label="Segmentation Mask")
|
90 |
+
],
|
91 |
title="YOLOv8 with SAM π",
|
92 |
+
description='This software generates the segmentation mask Medical images'
|
93 |
)
|
94 |
|
95 |
iface.launch()
|