Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from wordcloud import WordCloud, STOPWORDS
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from nltk.corpus import opinion_lexicon
|
6 |
+
from nltk.tokenize import word_tokenize
|
7 |
+
import nltk
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import io
|
11 |
+
|
12 |
+
# Ensure NLTK data is downloaded
|
13 |
+
nltk.download('opinion_lexicon')
|
14 |
+
nltk.download('punkt')
|
15 |
+
|
16 |
+
# Your existing logic for generate_word_cloud goes here
|
17 |
+
|
18 |
+
def generate_word_cloud(excel_file, column_name):
|
19 |
+
# Adapt your existing word cloud generation code to work with the input Excel file and column name.
|
20 |
+
# Instead of displaying the plot, save it to a buffer and return the image.
|
21 |
+
|
22 |
+
# Placeholder for your existing logic
|
23 |
+
|
24 |
+
# Save the plot to a buffer
|
25 |
+
buf = io.BytesIO()
|
26 |
+
plt.savefig(buf, format='png')
|
27 |
+
buf.seek(0)
|
28 |
+
image = Image.open(buf)
|
29 |
+
# Convert to numpy array for Gradio output
|
30 |
+
image_array = np.array(image)
|
31 |
+
return image_array
|
32 |
+
|
33 |
+
# Define Gradio interface
|
34 |
+
def process_excel(file_obj, column_name):
|
35 |
+
# Save the uploaded file to a temporary location
|
36 |
+
with open("temp_excel_file.xlsx", "wb") as f:
|
37 |
+
f.write(file_obj.read())
|
38 |
+
|
39 |
+
# Generate the word cloud
|
40 |
+
image = generate_word_cloud("temp_excel_file.xlsx", column_name)
|
41 |
+
|
42 |
+
# Return the image
|
43 |
+
return image
|
44 |
+
|
45 |
+
iface = gr.Interface(fn=process_excel,
|
46 |
+
inputs=[gr.inputs.File(file_count=1, label="Upload Excel File"), gr.inputs.Text(label="Column Name")],
|
47 |
+
outputs=gr.outputs.Image(type="numpy", label="Word Cloud"),
|
48 |
+
title="Word Cloud Generator",
|
49 |
+
description="Upload an Excel file and enter the column name to generate a word cloud of positive and negative words.")
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
iface.launch()
|