sumit-ai-ml commited on
Commit
a5b5869
·
verified ·
1 Parent(s): 3e6a446

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from wordcloud import WordCloud, STOPWORDS
4
+ import matplotlib.pyplot as plt
5
+ from nltk.corpus import opinion_lexicon
6
+ from nltk.tokenize import word_tokenize
7
+ import nltk
8
+ from PIL import Image
9
+ import numpy as np
10
+ import io
11
+
12
+ # Ensure NLTK data is downloaded
13
+ nltk.download('opinion_lexicon')
14
+ nltk.download('punkt')
15
+
16
+ # Your existing logic for generate_word_cloud goes here
17
+
18
+ def generate_word_cloud(excel_file, column_name):
19
+ # Adapt your existing word cloud generation code to work with the input Excel file and column name.
20
+ # Instead of displaying the plot, save it to a buffer and return the image.
21
+
22
+ # Placeholder for your existing logic
23
+
24
+ # Save the plot to a buffer
25
+ buf = io.BytesIO()
26
+ plt.savefig(buf, format='png')
27
+ buf.seek(0)
28
+ image = Image.open(buf)
29
+ # Convert to numpy array for Gradio output
30
+ image_array = np.array(image)
31
+ return image_array
32
+
33
+ # Define Gradio interface
34
+ def process_excel(file_obj, column_name):
35
+ # Save the uploaded file to a temporary location
36
+ with open("temp_excel_file.xlsx", "wb") as f:
37
+ f.write(file_obj.read())
38
+
39
+ # Generate the word cloud
40
+ image = generate_word_cloud("temp_excel_file.xlsx", column_name)
41
+
42
+ # Return the image
43
+ return image
44
+
45
+ iface = gr.Interface(fn=process_excel,
46
+ inputs=[gr.inputs.File(file_count=1, label="Upload Excel File"), gr.inputs.Text(label="Column Name")],
47
+ outputs=gr.outputs.Image(type="numpy", label="Word Cloud"),
48
+ title="Word Cloud Generator",
49
+ description="Upload an Excel file and enter the column name to generate a word cloud of positive and negative words.")
50
+
51
+ if __name__ == "__main__":
52
+ iface.launch()