Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from wordcloud import WordCloud, STOPWORDS | |
import matplotlib.pyplot as plt | |
from nltk.corpus import opinion_lexicon | |
from nltk.tokenize import word_tokenize | |
import nltk | |
from PIL import Image | |
import numpy as np | |
import io | |
# Ensure NLTK data is downloaded | |
nltk.download('opinion_lexicon') | |
nltk.download('punkt') | |
# Your existing logic for generate_word_cloud goes here | |
def generate_word_cloud(excel_file, column_name): | |
# Adapt your existing word cloud generation code to work with the input Excel file and column name. | |
# Instead of displaying the plot, save it to a buffer and return the image. | |
# Placeholder for your existing logic | |
# Save the plot to a buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png') | |
buf.seek(0) | |
image = Image.open(buf) | |
# Convert to numpy array for Gradio output | |
image_array = np.array(image) | |
return image_array | |
# Define Gradio interface | |
def process_excel(file_obj, column_name): | |
# Save the uploaded file to a temporary location | |
with open("temp_excel_file.xlsx", "wb") as f: | |
f.write(file_obj.read()) | |
# Generate the word cloud | |
image = generate_word_cloud("temp_excel_file.xlsx", column_name) | |
# Return the image | |
return image | |
iface = gr.Interface(fn=process_excel, | |
inputs=[gr.File(file_count=1, label="Upload Excel File"), gr.Textbox(label="Column Name")], | |
outputs=gr.Image(type="numpy", label="Word Cloud"), | |
title="Word Cloud Generator", | |
description="Upload an Excel file and enter the column name to generate a word cloud of positive and negative words.") | |
if __name__ == "__main__": | |
iface.launch() | |