Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.document_loaders import TextLoader
|
4 |
+
from langchain.document_loaders import Docx2txtLoader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from huggingface_hub import notebook_login
|
9 |
+
import torch
|
10 |
+
import transformers
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
from transformers import pipeline
|
13 |
+
from langchain import HuggingFacePipeline
|
14 |
+
from langchain.chains import ConversationalRetrievalChain
|
15 |
+
from langchain.memory import ConversationBufferMemory
|
16 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
17 |
+
from langchain.chat_models import ChatOpenAI
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
|
21 |
+
|
22 |
+
# Create a directory for documents if it doesn't exist
|
23 |
+
if not os.path.exists("docs"):
|
24 |
+
os.makedirs("docs")
|
25 |
+
|
26 |
+
# Define a function to load documents from the "docs" directory
|
27 |
+
def load_documents():
|
28 |
+
document = []
|
29 |
+
for file in os.listdir("docs"):
|
30 |
+
if file.endswith(".pdf"):
|
31 |
+
pdf_path = "./docs/" + file
|
32 |
+
loader = PyPDFLoader(pdf_path)
|
33 |
+
document.extend(loader.load())
|
34 |
+
elif file.endswith('.docx') or file.endswith('.doc'):
|
35 |
+
doc_path = "./docs/" + file
|
36 |
+
loader = Docx2txtLoader(doc_path)
|
37 |
+
document.extend(loader.load())
|
38 |
+
elif file.endswith('.txt'):
|
39 |
+
text_path = "./docs/" + file
|
40 |
+
loader = TextLoader(text_path)
|
41 |
+
document.extend(loader.load())
|
42 |
+
return document
|
43 |
+
|
44 |
+
# Load documents
|
45 |
+
document = load_documents()
|
46 |
+
|
47 |
+
# Split documents into chunks
|
48 |
+
document_splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100)
|
49 |
+
document_chunks = document_splitter.split_documents(document)
|
50 |
+
|
51 |
+
# Initialize embeddings
|
52 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
53 |
+
|
54 |
+
# Set OpenAI API key
|
55 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
56 |
+
|
57 |
+
# Initialize Chroma as the vector database
|
58 |
+
vectordb = Chroma.from_documents(document_chunks, embedding=embeddings, persist_directory='./data')
|
59 |
+
vectordb.persist()
|
60 |
+
|
61 |
+
# Login to Hugging Face Hub
|
62 |
+
notebook_login()
|
63 |
+
|
64 |
+
# Initialize tokenizer and model for text generation
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased", use_auth_token=True)
|
66 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", torch_dtype=torch.float16, device_map="auto")
|
67 |
+
|
68 |
+
# Initialize the text generation pipeline
|
69 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map='auto',
|
70 |
+
max_new_tokens=512, min_new_tokens=-1, top_k=30)
|
71 |
+
|
72 |
+
# Initialize the conversational retrieval chain
|
73 |
+
llm = HuggingFacePipeline(pipeline=pipe, model_kwargs={'temperature': 0})
|
74 |
+
llm = ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo')
|
75 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
76 |
+
pdf_qa = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectordb.as_retriever(search_kwargs={'k': 6}),
|
77 |
+
verbose=False, memory=memory)
|
78 |
+
|
79 |
+
# Streamlit app
|
80 |
+
st.title('DocBot - Your Document Query Assistant')
|
81 |
+
|
82 |
+
st.write('Upload your documents to get started.')
|
83 |
+
|
84 |
+
uploaded_files = st.file_uploader("Upload Files", type=['pdf', 'docx', 'doc', 'txt'], accept_multiple_files=True)
|
85 |
+
|
86 |
+
if uploaded_files:
|
87 |
+
st.write("Uploaded Files:")
|
88 |
+
for file in uploaded_files:
|
89 |
+
with open(os.path.join("docs", file.name), "wb") as f:
|
90 |
+
f.write(file.getbuffer())
|
91 |
+
st.write("Files uploaded successfully. You can start asking questions now.")
|
92 |
+
|
93 |
+
while True:
|
94 |
+
query = st.text_input("Ask a question:")
|
95 |
+
if query:
|
96 |
+
result = pdf_qa({"question": query})
|
97 |
+
st.write("Answer: " + result["answer"])
|