File size: 3,387 Bytes
d5b5b3a dd4319f d5b5b3a dd4319f d5b5b3a dd4319f d5b5b3a dd4319f d5b5b3a fffc505 d5b5b3a 041332b d5b5b3a 041332b d5b5b3a 041332b d5b5b3a dd4319f d5b5b3a fffc505 d5b5b3a 041332b d5b5b3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import streamlit as st
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Function to load the model and processor
@st.cache_resource
def load_model_and_processor():
config = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
config.vision_config.model_type = "davit"
model = AutoModelForCausalLM.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True).eval()
processor = AutoProcessor.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True)
return model, processor
# Function to generate answer
def generate_answer(model, processor, image, prompt):
task = "<FinanceQA>"
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))
return parsed_answer[task]
# Streamlit app
def main():
st.set_page_config(page_title="Lutece-Vision-Base Demo", page_icon="πΌ", layout="wide", initial_sidebar_state="expanded")
# Title and description
st.title("πΌ Lutece-Vision-Base Demo")
st.markdown("Please keep in mind that inference might be slower since this Huggingface space is running on CPU only.")
# Sidebar with SujetAI watermark
st.sidebar.image("sujetAI.svg", use_column_width=True)
st.sidebar.markdown("---")
st.sidebar.markdown("Sujet AI, a Paris-based AI startup, is on a noble mission to democratize investment opportunities by leveraging built-in models and cutting-edge technologies. Committed to open-sourcing its technology, Sujet AI aims to contribute to the research and development communities, ultimately serving the greater good of humanity.")
st.sidebar.markdown("---")
st.sidebar.markdown("Our website : [sujet.ai](https://sujet.ai)")
# Load model and processor
model, processor = load_model_and_processor()
# File uploader for document
uploaded_file = st.file_uploader("π Upload a financial document", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert('RGB')
# Two-column layout
col1, col2 = st.columns(2)
with col1:
# Display image with controlled size
st.image(image, caption="Uploaded Document", use_column_width=True)
with col2:
# Question input
question = st.text_input("β Ask a question about the document", "")
submit_button = st.button("π Generate Answer")
# Answer section spanning both columns
if submit_button and question:
with st.spinner("Generating answer..."):
answer = generate_answer(model, processor, image, question)
st.success(f"## π‘ {answer}")
if __name__ == "__main__":
main() |