sugiv commited on
Commit
ea3e553
·
1 Parent(s): cfbb143

Adding a simple monkey search for Leetcode - Darn LeetMonkey

Browse files
Files changed (1) hide show
  1. app.py +8 -2
app.py CHANGED
@@ -1,11 +1,12 @@
1
  import gradio as gr
2
  from pinecone import Pinecone, ServerlessSpec
3
- from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import torch
5
  from pinecone_text.sparse import SpladeEncoder
6
  from sentence_transformers import SentenceTransformer
7
  import transformers
8
  transformers.logging.set_verbosity_error()
 
 
9
 
10
  import os
11
  PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
@@ -15,6 +16,11 @@ pc = Pinecone(api_key=PINECONE_API_KEY)
15
  index_name = "leetmonkey-sparse-dense"
16
  index = pc.Index(index_name)
17
 
 
 
 
 
 
18
  # Initialize models
19
  device = 'cpu'
20
  splade = SpladeEncoder(device=device)
@@ -23,7 +29,7 @@ dense_model = SentenceTransformer('sentence-transformers/all-Mpnet-base-v2', dev
23
  # Load the quantized Llama 2 model and tokenizer
24
  model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
25
  tokenizer = AutoTokenizer.from_pretrained(model_name)
26
- model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config={"disable_exllama": True})
27
 
28
  def search_problems(query, top_k=5):
29
  dense_query = dense_model.encode([query])[0].tolist()
 
1
  import gradio as gr
2
  from pinecone import Pinecone, ServerlessSpec
 
3
  import torch
4
  from pinecone_text.sparse import SpladeEncoder
5
  from sentence_transformers import SentenceTransformer
6
  import transformers
7
  transformers.logging.set_verbosity_error()
8
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoGPTQConfig
9
+
10
 
11
  import os
12
  PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
 
16
  index_name = "leetmonkey-sparse-dense"
17
  index = pc.Index(index_name)
18
 
19
+ quantization_config = AutoGPTQConfig(
20
+ disable_exllama=True
21
+ )
22
+
23
+
24
  # Initialize models
25
  device = 'cpu'
26
  splade = SpladeEncoder(device=device)
 
29
  # Load the quantized Llama 2 model and tokenizer
30
  model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
31
  tokenizer = AutoTokenizer.from_pretrained(model_name)
32
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config=quantization_config)
33
 
34
  def search_problems(query, top_k=5):
35
  dense_query = dense_model.encode([query])[0].tolist()