Adding a simple monkey search for Leetcode - Darn LeetMonkey
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from pinecone import Pinecone, ServerlessSpec
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
from pinecone_text.sparse import SpladeEncoder
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
import transformers
|
| 8 |
transformers.logging.set_verbosity_error()
|
|
|
|
|
|
|
| 9 |
|
| 10 |
import os
|
| 11 |
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
|
|
@@ -15,6 +16,11 @@ pc = Pinecone(api_key=PINECONE_API_KEY)
|
|
| 15 |
index_name = "leetmonkey-sparse-dense"
|
| 16 |
index = pc.Index(index_name)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Initialize models
|
| 19 |
device = 'cpu'
|
| 20 |
splade = SpladeEncoder(device=device)
|
|
@@ -23,7 +29,7 @@ dense_model = SentenceTransformer('sentence-transformers/all-Mpnet-base-v2', dev
|
|
| 23 |
# Load the quantized Llama 2 model and tokenizer
|
| 24 |
model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 26 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config=
|
| 27 |
|
| 28 |
def search_problems(query, top_k=5):
|
| 29 |
dense_query = dense_model.encode([query])[0].tolist()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from pinecone import Pinecone, ServerlessSpec
|
|
|
|
| 3 |
import torch
|
| 4 |
from pinecone_text.sparse import SpladeEncoder
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
import transformers
|
| 7 |
transformers.logging.set_verbosity_error()
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoGPTQConfig
|
| 9 |
+
|
| 10 |
|
| 11 |
import os
|
| 12 |
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
|
|
|
|
| 16 |
index_name = "leetmonkey-sparse-dense"
|
| 17 |
index = pc.Index(index_name)
|
| 18 |
|
| 19 |
+
quantization_config = AutoGPTQConfig(
|
| 20 |
+
disable_exllama=True
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
# Initialize models
|
| 25 |
device = 'cpu'
|
| 26 |
splade = SpladeEncoder(device=device)
|
|
|
|
| 29 |
# Load the quantized Llama 2 model and tokenizer
|
| 30 |
model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 32 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config=quantization_config)
|
| 33 |
|
| 34 |
def search_problems(query, top_k=5):
|
| 35 |
dense_query = dense_model.encode([query])[0].tolist()
|