Adding a simple monkey search for Leetcode - Darn LeetMonkey
Browse files- app.py +37 -4
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -6,6 +6,28 @@ from sentence_transformers import SentenceTransformer
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
import os
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Initialize Pinecone
|
| 10 |
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
|
| 11 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
|
@@ -17,10 +39,21 @@ device = 'cpu'
|
|
| 17 |
splade = SpladeEncoder(device=device)
|
| 18 |
dense_model = SentenceTransformer('sentence-transformers/all-Mpnet-base-v2', device=device)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def search_problems(query, top_k=5):
|
| 26 |
dense_query = dense_model.encode([query])[0].tolist()
|
|
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
import os
|
| 8 |
|
| 9 |
+
import requests
|
| 10 |
+
import os
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def download_model(url, model_path):
|
| 15 |
+
response = requests.get(url, stream=True)
|
| 16 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 17 |
+
block_size = 1024 # 1 KB
|
| 18 |
+
|
| 19 |
+
with open(model_path, 'wb') as file, tqdm(
|
| 20 |
+
desc=model_path,
|
| 21 |
+
total=total_size,
|
| 22 |
+
unit='iB',
|
| 23 |
+
unit_scale=True,
|
| 24 |
+
unit_divisor=1024,
|
| 25 |
+
) as progress_bar:
|
| 26 |
+
for data in response.iter_content(block_size):
|
| 27 |
+
size = file.write(data)
|
| 28 |
+
progress_bar.update(size)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
# Initialize Pinecone
|
| 32 |
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
|
| 33 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
|
|
|
| 39 |
splade = SpladeEncoder(device=device)
|
| 40 |
dense_model = SentenceTransformer('sentence-transformers/all-Mpnet-base-v2', device=device)
|
| 41 |
|
| 42 |
+
from llama_cpp import Llama
|
| 43 |
+
|
| 44 |
+
# Define the model URL and path
|
| 45 |
+
model_url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/resolve/main/llama-2-7b-chat.Q4_K_M.gguf"
|
| 46 |
+
model_path = "/tmp/llama-2-7b-chat.Q4_K_M.gguf"
|
| 47 |
+
|
| 48 |
+
# Download the model if it doesn't exist
|
| 49 |
+
if not os.path.exists(model_path):
|
| 50 |
+
print(f"Downloading model to {model_path}...")
|
| 51 |
+
download_model(model_url, model_path)
|
| 52 |
+
print("Model downloaded successfully.")
|
| 53 |
+
|
| 54 |
+
# Initialize the Llama model
|
| 55 |
+
llm = Llama(model_path=model_path, n_ctx=2048, n_threads=4)
|
| 56 |
+
|
| 57 |
|
| 58 |
def search_problems(query, top_k=5):
|
| 59 |
dense_query = dense_model.encode([query])[0].tolist()
|
requirements.txt
CHANGED
|
@@ -6,4 +6,5 @@ sentence-transformers==2.2.2
|
|
| 6 |
pinecone-text
|
| 7 |
accelerate
|
| 8 |
optimum
|
| 9 |
-
auto-gptq
|
|
|
|
|
|
| 6 |
pinecone-text
|
| 7 |
accelerate
|
| 8 |
optimum
|
| 9 |
+
auto-gptq
|
| 10 |
+
llama-cpp-python
|