Adding a simple monkey search for Leetcode - Darn LeetMonkey
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from pinecone_text.sparse import SpladeEncoder
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import transformers
|
7 |
transformers.logging.set_verbosity_error()
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
|
10 |
|
11 |
import os
|
@@ -16,6 +16,11 @@ pc = Pinecone(api_key=PINECONE_API_KEY)
|
|
16 |
index_name = "leetmonkey-sparse-dense"
|
17 |
index = pc.Index(index_name)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Initialize models
|
21 |
device = 'cpu'
|
@@ -25,7 +30,7 @@ dense_model = SentenceTransformer('sentence-transformers/all-Mpnet-base-v2', dev
|
|
25 |
# Load the quantized Llama 2 model and tokenizer
|
26 |
model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto",
|
29 |
|
30 |
def search_problems(query, top_k=5):
|
31 |
dense_query = dense_model.encode([query])[0].tolist()
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import transformers
|
7 |
transformers.logging.set_verbosity_error()
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GPTQConfig
|
9 |
|
10 |
|
11 |
import os
|
|
|
16 |
index_name = "leetmonkey-sparse-dense"
|
17 |
index = pc.Index(index_name)
|
18 |
|
19 |
+
quantization_config = GPTQConfig(
|
20 |
+
disable_exllama=True
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
|
25 |
# Initialize models
|
26 |
device = 'cpu'
|
|
|
30 |
# Load the quantized Llama 2 model and tokenizer
|
31 |
model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config=quantization_config)
|
34 |
|
35 |
def search_problems(query, top_k=5):
|
36 |
dense_query = dense_model.encode([query])[0].tolist()
|