Spaces:
Sleeping
Sleeping
Leetmonkey In Action. Darn LeetMonkey these days
Browse files
app.py
CHANGED
|
@@ -56,7 +56,8 @@ generation_kwargs = {
|
|
| 56 |
"temperature": 0.2,
|
| 57 |
"top_k": 50,
|
| 58 |
"top_p": 0.95,
|
| 59 |
-
"repeat_penalty": 1.1
|
|
|
|
| 60 |
}
|
| 61 |
|
| 62 |
def generate_solution(instruction, model):
|
|
@@ -74,8 +75,15 @@ Here's the complete Python function implementation:
|
|
| 74 |
```python
|
| 75 |
"""
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
def extract_and_format_code(text):
|
| 81 |
# Extract code between triple backticks
|
|
@@ -136,29 +144,8 @@ def stream_solution(problem, model_name):
|
|
| 136 |
model = Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
|
| 137 |
|
| 138 |
logger.info(f"Generating solution using {model_name} model")
|
| 139 |
-
|
| 140 |
-
full_prompt = f"""### Instruction:
|
| 141 |
-
{system_prompt}
|
| 142 |
-
|
| 143 |
-
Implement the following function for the LeetCode problem:
|
| 144 |
-
|
| 145 |
-
{problem}
|
| 146 |
-
|
| 147 |
-
### Response:
|
| 148 |
-
Here's the complete Python function implementation:
|
| 149 |
-
|
| 150 |
-
```python
|
| 151 |
-
"""
|
| 152 |
-
|
| 153 |
-
generated_text = ""
|
| 154 |
-
for chunk in model(full_prompt, stream=True, **generation_kwargs):
|
| 155 |
-
token = chunk["choices"][0]["text"]
|
| 156 |
-
generated_text += token
|
| 157 |
yield generated_text
|
| 158 |
-
|
| 159 |
-
formatted_code = extract_and_format_code(generated_text)
|
| 160 |
-
logger.info("Solution generated successfully")
|
| 161 |
-
yield formatted_code
|
| 162 |
|
| 163 |
with gr.Blocks() as demo:
|
| 164 |
gr.Markdown("# LeetCode Problem Solver")
|
|
|
|
| 56 |
"temperature": 0.2,
|
| 57 |
"top_k": 50,
|
| 58 |
"top_p": 0.95,
|
| 59 |
+
"repeat_penalty": 1.1,
|
| 60 |
+
"stream": True
|
| 61 |
}
|
| 62 |
|
| 63 |
def generate_solution(instruction, model):
|
|
|
|
| 75 |
```python
|
| 76 |
"""
|
| 77 |
|
| 78 |
+
generated_text = ""
|
| 79 |
+
for chunk in model(full_prompt, stream=True, **generation_kwargs):
|
| 80 |
+
token = chunk["choices"][0]["text"]
|
| 81 |
+
generated_text += token
|
| 82 |
+
yield generated_text
|
| 83 |
+
|
| 84 |
+
formatted_code = extract_and_format_code(generated_text)
|
| 85 |
+
yield formatted_code
|
| 86 |
+
|
| 87 |
|
| 88 |
def extract_and_format_code(text):
|
| 89 |
# Extract code between triple backticks
|
|
|
|
| 144 |
model = Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
|
| 145 |
|
| 146 |
logger.info(f"Generating solution using {model_name} model")
|
| 147 |
+
for generated_text in generate_solution(problem, model):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
yield generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
with gr.Blocks() as demo:
|
| 151 |
gr.Markdown("# LeetCode Problem Solver")
|