import gradio as gr from huggingface_hub import hf_hub_download from llama_cpp import Llama import re import random import logging import os import jwt from typing import Dict, Any import autopep8 import textwrap from datasets import load_dataset import time from collections import defaultdict import threading import hashlib # Rate limiting data structures token_usage = defaultdict(int) last_reset_time = time.time() rate_limit_lock = threading.Lock() # Constants MAX_TOKEN_USAGE = 10 RESET_INTERVAL = 24 * 60 * 60 # 24 hours in seconds # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Load the dataset dataset = load_dataset("sugiv/leetmonkey_python_dataset") train_dataset = dataset["train"] # JWT settings JWT_SECRET = os.environ.get("JWT_SECRET") if not JWT_SECRET: raise ValueError("JWT_SECRET environment variable is not set") JWT_ALGORITHM = "HS256" # Model settings #MODEL_NAME = "leetmonkey_peft__q8_0.gguf" MODEL_NAME= "leetmonkey_peft_super_block_q6.gguf" REPO_ID = "sugiv/leetmonkey-peft-gguf" # Load the model model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME, cache_dir="./models") #llm = Llama(model_path=model_path, n_ctx=2048, n_threads=16, n_gpu_layers=-1, verbose=False, mlock=True) ## TPU llm = Llama(model_path=model_path, n_ctx=1024, n_threads=2, n_gpu_layers=0, verbose=False, mlock=True) ## CPU only #llm = Llama(model_path=model_path, n_ctx=1024, n_threads=4, n_gpu_layers=-1, verbose=False, mlock=True) ## Nvidia logger.info("8-bit model loaded successfully") # User data storage token_to_problem_solution = {} # Generation parameters generation_kwargs = { "max_tokens": 512, "stop": ["```", "### Instruction:", "### Response:"], "echo": False, "temperature": 0.05, "top_k": 10, "top_p": 0.9, "repeat_penalty": 1.1 } def verify_token(token: str) -> bool: try: jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM]) return True except jwt.PyJWTError: return False def check_rate_limit(token: str): global last_reset_time with rate_limit_lock: current_time = time.time() if current_time - last_reset_time >= RESET_INTERVAL: token_usage.clear() last_reset_time = current_time if token_usage[token] >= MAX_TOKEN_USAGE: return False, "Rate limit exceeded. Please try again later." token_usage[token] += 1 return True, "" def extract_and_format_code(text): code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL) if code_match: code = code_match.group(1) else: code = text code = textwrap.dedent(code) lines = code.split('\n') indented_lines = [] for line in lines: if line.strip().startswith('class') or line.strip().startswith('def'): indented_lines.append(line) elif line.strip(): indented_lines.append(' ' + line) else: indented_lines.append(line) formatted_code = '\n'.join(indented_lines) try: return autopep8.fix_code(formatted_code) except: return formatted_code def generate_explanation(problem: str, solution: str, token: str) -> Dict[str, Any]: if not verify_token(token): return {"error": "Invalid token"} is_allowed, message = check_rate_limit(token) if not is_allowed: return {"error": message} problem_solution_hash = hashlib.sha256(f"{problem}{solution}".encode()).hexdigest() if token not in token_to_problem_solution or token_to_problem_solution[token] != problem_solution_hash: return {"error": "No matching problem-solution pair found for this token"} system_prompt = "You are a Python coding assistant specialized in explaining LeetCode problem solutions. Provide a clear and concise explanation of the given solution." full_prompt = f"""### Instruction: {system_prompt} Problem: {problem} Solution: {solution} Explain this solution step by step. ### Response: Here's the explanation of the solution: """ generated_text = "" for chunk in llm(full_prompt, stream=True, **generation_kwargs): generated_text += chunk["choices"][0]["text"] return {"explanation": generated_text} def generate_solution(instruction: str, token: str) -> Dict[str, Any]: if not verify_token(token): return {"error": "Invalid token"} is_allowed, message = check_rate_limit(token) if not is_allowed: return {"error": message} system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions." full_prompt = f"""### Instruction: {system_prompt} Implement the following function for the LeetCode problem: {instruction} ### Response: Here's the complete Python function implementation: ```python """ generated_text = "" for chunk in llm(full_prompt, stream=True, **generation_kwargs): generated_text += chunk["choices"][0]["text"] formatted_code = extract_and_format_code(generated_text) problem_solution_hash = hashlib.sha256(f"{instruction}{formatted_code}".encode()).hexdigest() token_to_problem_solution[token] = problem_solution_hash return {"solution": formatted_code} def random_problem(token: str) -> Dict[str, Any]: if not verify_token(token): return {"error": "Invalid token"} is_allowed, message = check_rate_limit(token) if not is_allowed: return {"error": message} random_item = random.choice(train_dataset) problem = random_item['instruction'] return {"problem": problem} # Create Gradio interfaces generate_interface = gr.Interface( fn=generate_solution, inputs=[ gr.Textbox(label="Problem Instruction"), gr.Textbox(label="JWT Token") ], outputs=gr.JSON(), title="Generate Solution API", description="Provide a LeetCode problem instruction and a valid JWT token to generate a solution." ) random_problem_interface = gr.Interface( fn=random_problem, inputs=[gr.Textbox(label="JWT Token")], outputs=gr.JSON(), title="Random Problem API", description="Provide a valid JWT token to get a random LeetCode problem." ) explain_interface = gr.Interface( fn=generate_explanation, inputs=[ gr.Textbox(label="Problem"), gr.Textbox(label="Solution"), gr.Textbox(label="JWT Token") ], outputs=gr.JSON(), title="Explain Solution API", description="Provide a problem, solution, and valid JWT token to get an explanation of the solution." ) demo = gr.TabbedInterface( [generate_interface, explain_interface, random_problem_interface], ["Generate Solution", "Explain Solution", "Random Problem"] ) # Launch the Gradio app demo.launch()