Adding logic to rate limit, get JWT token with user identity
Browse files
app.py
CHANGED
|
@@ -9,23 +9,31 @@ import jwt
|
|
| 9 |
from typing import Dict, Any
|
| 10 |
import autopep8
|
| 11 |
import textwrap
|
| 12 |
-
|
| 13 |
from datasets import load_dataset
|
| 14 |
-
import
|
| 15 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Set up logging
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
-
# Load the dataset
|
| 22 |
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
| 23 |
train_dataset = dataset["train"]
|
| 24 |
|
| 25 |
-
# Set up logging
|
| 26 |
-
logging.basicConfig(level=logging.INFO)
|
| 27 |
-
logger = logging.getLogger(__name__)
|
| 28 |
-
|
| 29 |
# JWT settings
|
| 30 |
JWT_SECRET = os.environ.get("JWT_SECRET")
|
| 31 |
if not JWT_SECRET:
|
|
@@ -41,7 +49,9 @@ model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME, cache_dir="./
|
|
| 41 |
llm = Llama(model_path=model_path, n_ctx=1024, n_threads=8, n_gpu_layers=-1, verbose=False, mlock=True)
|
| 42 |
logger.info("8-bit model loaded successfully")
|
| 43 |
|
|
|
|
| 44 |
user_data = {}
|
|
|
|
| 45 |
|
| 46 |
# Generation parameters
|
| 47 |
generation_kwargs = {
|
|
@@ -54,6 +64,18 @@ generation_kwargs = {
|
|
| 54 |
"repeat_penalty": 1.1
|
| 55 |
}
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
def verify_token(token: str) -> bool:
|
| 58 |
try:
|
| 59 |
jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
|
|
@@ -61,6 +83,23 @@ def verify_token(token: str) -> bool:
|
|
| 61 |
except jwt.PyJWTError:
|
| 62 |
return False
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def extract_and_format_code(text):
|
| 65 |
# Extract code between triple backticks
|
| 66 |
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
|
@@ -96,6 +135,11 @@ def generate_explanation(problem: str, solution: str, token: str) -> Dict[str, A
|
|
| 96 |
if not verify_token(token):
|
| 97 |
return {"error": "Invalid token"}
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
system_prompt = "You are a Python coding assistant specialized in explaining LeetCode problem solutions. Provide a clear and concise explanation of the given solution."
|
| 100 |
full_prompt = f"""### Instruction:
|
| 101 |
{system_prompt}
|
|
@@ -120,7 +164,15 @@ Here's the explanation of the solution:
|
|
| 120 |
return {"explanation": generated_text}
|
| 121 |
|
| 122 |
|
| 123 |
-
def generate_solution(instruction: str, token: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
if not verify_token(token):
|
| 125 |
return {"error": "Invalid token"}
|
| 126 |
|
|
@@ -143,10 +195,19 @@ Here's the complete Python function implementation:
|
|
| 143 |
generated_text += chunk["choices"][0]["text"]
|
| 144 |
|
| 145 |
formatted_code = extract_and_format_code(generated_text)
|
| 146 |
-
|
|
|
|
| 147 |
return {"solution": formatted_code}
|
| 148 |
|
| 149 |
-
def random_problem(token: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
if not verify_token(token):
|
| 151 |
return {"error": "Invalid token"}
|
| 152 |
|
|
@@ -159,22 +220,32 @@ def random_problem(token: str) -> Dict[str, Any]:
|
|
| 159 |
|
| 160 |
return {"problem": problem}
|
| 161 |
|
| 162 |
-
def explain_solution(token: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if not verify_token(token):
|
| 164 |
return {"error": "Invalid token"}
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
solution = user_data[token]["solution"]
|
| 171 |
-
|
| 172 |
return generate_explanation(problem, solution, token)
|
| 173 |
|
| 174 |
# Create Gradio interfaces
|
| 175 |
generate_interface = gr.Interface(
|
| 176 |
fn=generate_solution,
|
| 177 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
outputs=gr.JSON(),
|
| 179 |
title="Generate Solution API",
|
| 180 |
description="Provide a LeetCode problem instruction and a valid JWT token to generate a solution."
|
|
@@ -182,7 +253,10 @@ generate_interface = gr.Interface(
|
|
| 182 |
|
| 183 |
random_problem_interface = gr.Interface(
|
| 184 |
fn=random_problem,
|
| 185 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
| 186 |
outputs=gr.JSON(),
|
| 187 |
title="Random Problem API",
|
| 188 |
description="Provide a valid JWT token to get a random LeetCode problem."
|
|
@@ -190,10 +264,15 @@ random_problem_interface = gr.Interface(
|
|
| 190 |
|
| 191 |
explain_interface = gr.Interface(
|
| 192 |
fn=explain_solution,
|
| 193 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
outputs=gr.JSON(),
|
| 195 |
title="Explain Solution API",
|
| 196 |
-
description="Provide a valid JWT token to get an explanation of the
|
| 197 |
)
|
| 198 |
|
| 199 |
demo = gr.TabbedInterface(
|
|
|
|
| 9 |
from typing import Dict, Any
|
| 10 |
import autopep8
|
| 11 |
import textwrap
|
|
|
|
| 12 |
from datasets import load_dataset
|
| 13 |
+
import time
|
| 14 |
+
from collections import defaultdict
|
| 15 |
+
import threading
|
| 16 |
+
import hashlib
|
| 17 |
+
|
| 18 |
+
# Rate limiting data structures
|
| 19 |
+
ip_usage = defaultdict(int)
|
| 20 |
+
session_usage = defaultdict(int)
|
| 21 |
+
last_reset_time = time.time()
|
| 22 |
+
rate_limit_lock = threading.Lock()
|
| 23 |
+
|
| 24 |
+
# Constants
|
| 25 |
+
MAX_IP_USAGE = 10
|
| 26 |
+
MAX_SESSION_USAGE = 2
|
| 27 |
+
RESET_INTERVAL = 24 * 60 * 60 # 24 hours in seconds
|
| 28 |
|
| 29 |
# Set up logging
|
| 30 |
logging.basicConfig(level=logging.INFO)
|
| 31 |
logger = logging.getLogger(__name__)
|
| 32 |
|
| 33 |
+
# Load the dataset
|
| 34 |
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
| 35 |
train_dataset = dataset["train"]
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# JWT settings
|
| 38 |
JWT_SECRET = os.environ.get("JWT_SECRET")
|
| 39 |
if not JWT_SECRET:
|
|
|
|
| 49 |
llm = Llama(model_path=model_path, n_ctx=1024, n_threads=8, n_gpu_layers=-1, verbose=False, mlock=True)
|
| 50 |
logger.info("8-bit model loaded successfully")
|
| 51 |
|
| 52 |
+
# User data storage
|
| 53 |
user_data = {}
|
| 54 |
+
token_to_problem_solution = {}
|
| 55 |
|
| 56 |
# Generation parameters
|
| 57 |
generation_kwargs = {
|
|
|
|
| 64 |
"repeat_penalty": 1.1
|
| 65 |
}
|
| 66 |
|
| 67 |
+
def generate_user_identifier(request: gr.Request) -> str:
|
| 68 |
+
ip = request.client.ip
|
| 69 |
+
user_agent = request.headers.get('User-Agent', '')
|
| 70 |
+
return hashlib.sha256(f"{ip}{user_agent}".encode()).hexdigest()
|
| 71 |
+
|
| 72 |
+
def generate_token(user_identifier: str) -> str:
|
| 73 |
+
payload = {
|
| 74 |
+
'exp': int(time.time()) + 3600, # 1 hour expiration
|
| 75 |
+
'user_id': user_identifier
|
| 76 |
+
}
|
| 77 |
+
return jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
|
| 78 |
+
|
| 79 |
def verify_token(token: str) -> bool:
|
| 80 |
try:
|
| 81 |
jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
|
|
|
|
| 83 |
except jwt.PyJWTError:
|
| 84 |
return False
|
| 85 |
|
| 86 |
+
def check_rate_limit(ip, session):
|
| 87 |
+
global last_reset_time
|
| 88 |
+
with rate_limit_lock:
|
| 89 |
+
current_time = time.time()
|
| 90 |
+
if current_time - last_reset_time >= RESET_INTERVAL:
|
| 91 |
+
ip_usage.clear()
|
| 92 |
+
session_usage.clear()
|
| 93 |
+
last_reset_time = current_time
|
| 94 |
+
if ip_usage[ip] >= MAX_IP_USAGE:
|
| 95 |
+
return False, "IP rate limit exceeded. Please try again in 24 hours."
|
| 96 |
+
if session_usage[session] >= MAX_SESSION_USAGE:
|
| 97 |
+
return False, "Session rate limit exceeded. Please try again in 24 hours."
|
| 98 |
+
ip_usage[ip] += 1
|
| 99 |
+
session_usage[session] += 1
|
| 100 |
+
return True, ""
|
| 101 |
+
|
| 102 |
+
|
| 103 |
def extract_and_format_code(text):
|
| 104 |
# Extract code between triple backticks
|
| 105 |
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
|
|
|
| 135 |
if not verify_token(token):
|
| 136 |
return {"error": "Invalid token"}
|
| 137 |
|
| 138 |
+
problem_solution_hash = hashlib.sha256(f"{problem}{solution}".encode()).hexdigest()
|
| 139 |
+
if token not in token_to_problem_solution or token_to_problem_solution[token] != problem_solution_hash:
|
| 140 |
+
return {"error": "No matching problem-solution pair found for this token"}
|
| 141 |
+
|
| 142 |
+
|
| 143 |
system_prompt = "You are a Python coding assistant specialized in explaining LeetCode problem solutions. Provide a clear and concise explanation of the given solution."
|
| 144 |
full_prompt = f"""### Instruction:
|
| 145 |
{system_prompt}
|
|
|
|
| 164 |
return {"explanation": generated_text}
|
| 165 |
|
| 166 |
|
| 167 |
+
def generate_solution(instruction: str, token: str, request: gr.Request) -> Dict[str, Any]:
|
| 168 |
+
ip = request.client.ip
|
| 169 |
+
session = request.client.session
|
| 170 |
+
user_identifier = generate_user_identifier(request)
|
| 171 |
+
|
| 172 |
+
is_allowed, message = check_rate_limit(ip, session)
|
| 173 |
+
if not is_allowed:
|
| 174 |
+
return {"error": message}
|
| 175 |
+
|
| 176 |
if not verify_token(token):
|
| 177 |
return {"error": "Invalid token"}
|
| 178 |
|
|
|
|
| 195 |
generated_text += chunk["choices"][0]["text"]
|
| 196 |
|
| 197 |
formatted_code = extract_and_format_code(generated_text)
|
| 198 |
+
problem_solution_hash = hashlib.sha256(f"{instruction}{formatted_code}".encode()).hexdigest()
|
| 199 |
+
token_to_problem_solution[token] = problem_solution_hash
|
| 200 |
return {"solution": formatted_code}
|
| 201 |
|
| 202 |
+
def random_problem(token: str, request: gr.Request) -> Dict[str, Any]:
|
| 203 |
+
ip = request.client.ip
|
| 204 |
+
session = request.client.session
|
| 205 |
+
user_identifier = generate_user_identifier(request)
|
| 206 |
+
|
| 207 |
+
is_allowed, message = check_rate_limit(ip, session)
|
| 208 |
+
if not is_allowed:
|
| 209 |
+
return {"error": message}
|
| 210 |
+
|
| 211 |
if not verify_token(token):
|
| 212 |
return {"error": "Invalid token"}
|
| 213 |
|
|
|
|
| 220 |
|
| 221 |
return {"problem": problem}
|
| 222 |
|
| 223 |
+
def explain_solution(token: str, problem: str, solution: str, request: gr.Request) -> Dict[str, Any]:
|
| 224 |
+
ip = request.client.ip
|
| 225 |
+
session = request.client.session
|
| 226 |
+
user_identifier = generate_user_identifier(request)
|
| 227 |
+
|
| 228 |
+
is_allowed, message = check_rate_limit(ip, session)
|
| 229 |
+
if not is_allowed:
|
| 230 |
+
return {"error": message}
|
| 231 |
+
|
| 232 |
if not verify_token(token):
|
| 233 |
return {"error": "Invalid token"}
|
| 234 |
+
|
| 235 |
+
problem_solution_hash = hashlib.sha256(f"{problem}{solution}".encode()).hexdigest()
|
| 236 |
+
if token not in token_to_problem_solution or token_to_problem_solution[token] != problem_solution_hash:
|
| 237 |
+
return {"error": "No matching problem-solution pair found for this token"}
|
| 238 |
+
|
|
|
|
|
|
|
| 239 |
return generate_explanation(problem, solution, token)
|
| 240 |
|
| 241 |
# Create Gradio interfaces
|
| 242 |
generate_interface = gr.Interface(
|
| 243 |
fn=generate_solution,
|
| 244 |
+
inputs=[
|
| 245 |
+
gr.Textbox(label="Problem Instruction"),
|
| 246 |
+
gr.Textbox(label="JWT Token"),
|
| 247 |
+
gr.Request()
|
| 248 |
+
],
|
| 249 |
outputs=gr.JSON(),
|
| 250 |
title="Generate Solution API",
|
| 251 |
description="Provide a LeetCode problem instruction and a valid JWT token to generate a solution."
|
|
|
|
| 253 |
|
| 254 |
random_problem_interface = gr.Interface(
|
| 255 |
fn=random_problem,
|
| 256 |
+
inputs=[
|
| 257 |
+
gr.Textbox(label="JWT Token"),
|
| 258 |
+
gr.Request()
|
| 259 |
+
],
|
| 260 |
outputs=gr.JSON(),
|
| 261 |
title="Random Problem API",
|
| 262 |
description="Provide a valid JWT token to get a random LeetCode problem."
|
|
|
|
| 264 |
|
| 265 |
explain_interface = gr.Interface(
|
| 266 |
fn=explain_solution,
|
| 267 |
+
inputs=[
|
| 268 |
+
gr.Textbox(label="JWT Token"),
|
| 269 |
+
gr.Textbox(label="Problem"),
|
| 270 |
+
gr.Textbox(label="Solution"),
|
| 271 |
+
gr.Request()
|
| 272 |
+
],
|
| 273 |
outputs=gr.JSON(),
|
| 274 |
title="Explain Solution API",
|
| 275 |
+
description="Provide a valid JWT token, problem, and solution to get an explanation of the solution."
|
| 276 |
)
|
| 277 |
|
| 278 |
demo = gr.TabbedInterface(
|