import gradio as gr from diffusers import StableDiffusionPipeline import torch # Make sure to specify the correct model pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4-original", torch_dtype=torch.float32) pipe.to("cpu") # Run on CPU (or change to "cuda" if you have a GPU) # Inference function def infer(prompt, guidance_scale=7.5, num_inference_steps=50): # Generate image from the prompt image = pipe(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] return image # Create Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Hyper-Sketch with Stable Diffusion") with gr.Row(): prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2) generate_button = gr.Button("Generate Image") output_image = gr.Image(label="Generated Image") generate_button.click(infer, inputs=[prompt], outputs=[output_image]) # Launch the app demo.launch()