File size: 5,241 Bytes
26e5c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4592bc
26e5c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gc
import laspy
import torch
import tempfile
import numpy as np
import open3d as o3d
import streamlit as st
import plotly.graph_objs as go

import pointnet2_cls_msg as pn2
from utils import calculate_dbh, calc_canopy_volume, CLASSES
from SingleTreePointCloudLoader import SingleTreePointCloudLoader
gc.enable()

with st.spinner("Loading PointNet++ model..."):
    checkpoint = torch.load('checkpoints/best_model.pth', map_location=torch.device('cpu'))
    classifier = pn2.get_model(num_class=4, normal_channel=False)
    classifier.load_state_dict(checkpoint['model_state_dict'])
    classifier.eval()

st.title("Tree Species Identification")

uploaded_file = st.file_uploader(
    label="Upload Point Cloud Data", 
    type=['laz', 'las', 'pcd'], 
    help="Please upload trees with ground points removed"
)
Z_THRESHOLD = st.slider(
    label="Z-Threshold(%)", 
    min_value=5, 
    max_value=100, 
    value=50, 
    step=1, 
    help="Please select a Z-Threshold for canopy volume calculation"
)
DBH_HEIGHT = st.slider(
    label="DBH Height(m)", 
    min_value=1.3,
    max_value=1.4,
    value=1.4,
    step=0.01,
    help="Enter height used for DBH calculation"
)
proceed = None

if uploaded_file:
    try:
        with st.spinner("Reading point cloud file..."):
            file_type = uploaded_file.name.split('.')[-1].lower()
            with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp:
                tmp.write(uploaded_file.read())
                temp_file_path = tmp.name
            
            if file_type == 'pcd':
                pcd = o3d.io.read_point_cloud(temp_file_path)
                points = np.asarray(pcd.points)
            else:
                point_cloud = laspy.read(temp_file_path)
                points = np.vstack((point_cloud.x, point_cloud.y, point_cloud.z)).transpose()
                
        proceed = st.button("Run model")
    except Exception as e:
        st.error(f"An error occured: {str(e)}")

if proceed:
    try:
        with st.spinner("Calculating tree inventory..."):
            dbh, trunk_points = calculate_dbh(points, DBH_HEIGHT)
            
            z_min = np.min(points[:, 2])
            z_max = np.max(points[:, 2])
            height = z_max - z_min
            
            canopy_volume, canopy_points = calc_canopy_volume(points, Z_THRESHOLD, height, z_min)
                
        with st.spinner("Visualizing point cloud..."):
            fig = go.Figure()
            fig.add_trace(go.Scatter3d(
                x=points[:, 0],
                y=points[:, 1],
                z=points[:, 2],
                mode='markers',
                marker=dict(
                    size=0.5,
                    color=points[:, 2], 
                    colorscale='Viridis', 
                    opacity=1.0, 
                ),
                name='Tree'
            ))
            fig.add_trace(go.Scatter3d(
                x=canopy_points[:, 0], 
                y=canopy_points[:, 1], 
                z=canopy_points[:, 2], 
                mode='markers', 
                marker=dict(
                    size=2, 
                    color='blue', 
                    opacity=0.8, 
                ),
                name='Canopy points'
            ))
            fig.add_trace(go.Scatter3d(
                x=trunk_points[:, 0], 
                y=trunk_points[:, 1], 
                z=trunk_points[:, 2], 
                mode='markers', 
                marker=dict(
                    size=2, 
                    color='red', 
                    opacity=0.9, 
                ),
                name='DBH'
            ))
            fig.update_layout(
                margin=dict(l=0, r=0, b=0, t=0),
                scene=dict(
                    xaxis_title="X",
                    yaxis_title="Y",
                    zaxis_title="Z",
                    aspectmode='data'
                )
            )
            st.plotly_chart(fig, use_container_width=True)
            
            
        with st.spinner("Running inference..."):
            testFile = SingleTreePointCloudLoader(temp_file_path, file_type)
            testFileLoader = torch.utils.data.DataLoader(testFile, batch_size=8, shuffle=False, num_workers=0)
            point_set, _ = next(iter(testFileLoader))
            point_set = point_set.transpose(2, 1)
            
            with torch.no_grad():
                logits, _ = classifier(point_set)
                probabilities = torch.softmax(logits, dim=-1)
                predicted_class = torch.argmax(probabilities, dim=-1).item()
                confidence_score = (probabilities.numpy().tolist())[0][predicted_class] * 100
                predicted_label = CLASSES[predicted_class]
            
        st.write(f"**Predicted class: {predicted_label}**")
        # st.write(f"Class Probabilities: {probabilities.numpy().tolist()}")
        st.write(f"**Confidence score: {confidence_score:.2f}%**")
        st.write(f"**Height of tree: {height:.2f}m**")
        st.write(f"**Canopy volume: {canopy_volume:.2f}m\u00b3**")
        st.write(f"**DBH: {dbh:.2f}m**")
        
    except Exception as e:
        st.error(f"An error occured: {str(e)}")