import gradio as gr import torchvision impport torch model = torch.hub.load( "ndahlquist/pytorch-hub-stylegan:0.0.1", "style_gan", pretrained=True) def iface(name): model.eval() device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model.to(device) latents = torch.randn(1, 512, device=device) with torch.no_grad(): img = model(latents) img = (img.clamp(-1, 1) + 1) / 2.0 img2=img.numpy() img3=img2.squeeze() img4 = img3.swapaxes(0,1) img5=img4.swapaxes(1,2) out= img5 return out demo = gr.Interface(fn=iface,inputs='text', outputs='image') demo.launch()