sudhir2016 commited on
Commit
9912c31
·
1 Parent(s): bfbd78b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ def recognize(img):
4
+ img1=img.resize((224,224))
5
+ img_norm = transform_norm(img1)
6
+ output = model(img_norm[None,])
7
+ out=output.argmax(dim=-1).item()
8
+ out1=(df.iloc[out,0])
9
+ return out1
10
+ demo = gr.Interface(fn=recognize, inputs='pil',outputs='text',examples= [['Banana.jpg']])
11
+ demo.launch()#debug=True)
12
+ import torch
13
+ from PIL import Image
14
+ from torchvision import transforms
15
+ from torchvision.transforms.functional import InterpolationMode
16
+ from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
17
+ import hiera
18
+ df=pd.read_csv('Imagenet.txt',usecols=[0],header=None)
19
+ model = hiera.hiera_base_224(pretrained=True, checkpoint="mae_in1k_ft_in1k")
20
+ input_size = 224
21
+ transform_list = [
22
+ transforms.Resize(int((256 / 224) * input_size), interpolation=InterpolationMode.BICUBIC),
23
+ transforms.CenterCrop(input_size)
24
+ ]
25
+ #transform_vis = transforms.Compose(transform_list)
26
+ transform_norm = transforms.Compose(transform_list + [
27
+ transforms.ToTensor(),
28
+ transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
29
+ ])
30
+ def recognize(img):
31
+ img1=img.resize((224,224))
32
+ img_norm = transform_norm(img1)
33
+ output = model(img_norm[None,])
34
+ out=output.argmax(dim=-1).item()
35
+ out1=(df.iloc[out,0])
36
+ return out1
37
+ demo = gr.Interface(fn=recognize, inputs='pil',outputs='text',examples= [['Banana.jpg']])
38
+ demo.launch()