Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
import hiera | |
df=pd.read_csv('Imagenet.txt',usecols=[0],header=None) | |
model = hiera.hiera_base_224(pretrained=True, checkpoint="mae_in1k_ft_in1k") | |
input_size = 224 | |
transform_list = [ | |
transforms.Resize(int((256 / 224) * input_size), interpolation=InterpolationMode.BICUBIC), | |
transforms.CenterCrop(input_size) | |
] | |
transform_norm = transforms.Compose(transform_list + [ | |
transforms.ToTensor(), | |
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), | |
]) | |
def recognize(img): | |
img1=img.resize((224,224)) | |
img_norm = transform_norm(img1) | |
output = model(img_norm[None,]) | |
out=output.argmax(dim=-1).item() | |
out1=(df.iloc[out,0]) | |
return out1 | |
demo = gr.Interface(fn=recognize, inputs='pil',outputs='text',examples= [['Banana.jpg']]) | |
demo.launch() |