import gradio as gr from langchain.vectorstores import Qdrant from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.document_loaders import TextLoader embeddings = HuggingFaceEmbeddings() Gita=open('Gita.txt') loader = TextLoader('Gita.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) qdrant = Qdrant.from_documents( docs, embeddings, location=":memory:", collection_name="my_documents",) def answer(query): out = qdrant.similarity_search_with_score(query) out1=out[0] out2=out1[0].page_content return out2 demo = gr.Interface(fn=answer, inputs='text',outputs='text',examples=[['song celestial']]) demo.launch()