Commit
·
b9f52a3
1
Parent(s):
d90f8fe
init
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# 加载 tokenizer 和模型
|
7 |
+
tokenizer_path = "studyinglover/IntelliKernel-0.03b-sft"
|
8 |
+
model_path = "studyinglover/IntelliKernel-0.03b-sft"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
|
15 |
+
# 定义一个生成回复的函数
|
16 |
+
def chat_with_model(history, user_input, top_k, temperature):
|
17 |
+
# 将用户输入追加到对话历史
|
18 |
+
history.append({"role": "user", "content": user_input})
|
19 |
+
|
20 |
+
# 生成新提示
|
21 |
+
new_prompt = tokenizer.apply_chat_template(
|
22 |
+
history, tokenize=False, add_generation_prompt=True
|
23 |
+
)[-(model.config.max_seq_len - 1) :]
|
24 |
+
|
25 |
+
# 编码输入并发送到设备
|
26 |
+
x = tokenizer(new_prompt, return_tensors="pt").input_ids.to(device)
|
27 |
+
|
28 |
+
# 使用模型生成回复并计时
|
29 |
+
output_text = ""
|
30 |
+
start_time = time.time()
|
31 |
+
with torch.inference_mode():
|
32 |
+
_output = model.generate(
|
33 |
+
x,
|
34 |
+
tokenizer.eos_token_id,
|
35 |
+
max_new_tokens=512,
|
36 |
+
top_k=top_k,
|
37 |
+
temperature=temperature,
|
38 |
+
stream=True,
|
39 |
+
)
|
40 |
+
|
41 |
+
for i in _output:
|
42 |
+
output = tokenizer.decode(i[0].tolist())
|
43 |
+
output_text += output
|
44 |
+
|
45 |
+
end_time = time.time()
|
46 |
+
elapsed_time = end_time - start_time
|
47 |
+
num_tokens = len(tokenizer.encode(output_text))
|
48 |
+
token_speed = num_tokens / elapsed_time if elapsed_time > 0 else 0
|
49 |
+
|
50 |
+
# 更新最新对话的 token 数量和生成速度
|
51 |
+
token_info = (
|
52 |
+
f"Token 数量: {num_tokens}\nToken 输出速度: {token_speed:.2f} tokens/sec"
|
53 |
+
)
|
54 |
+
|
55 |
+
# 将模型回复加入对话历史
|
56 |
+
history.append({"role": "assistant", "content": output_text.strip()})
|
57 |
+
|
58 |
+
# 返回更新后的对话历史和 token 信息
|
59 |
+
return history, "", token_info
|
60 |
+
|
61 |
+
|
62 |
+
# 使用 Gradio 构建对话机器人界面
|
63 |
+
with gr.Blocks() as iface:
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column(scale=1):
|
66 |
+
# 左侧参数控制区域
|
67 |
+
top_k_slider = gr.Slider(0, 100, value=50, step=1, label="Top-k")
|
68 |
+
temp_slider = gr.Slider(0.1, 1.5, value=1.0, step=0.1, label="Temperature")
|
69 |
+
token_info_box = gr.Markdown(
|
70 |
+
"Token 数量: \nToken 输出速度: "
|
71 |
+
) # 显示 token 信息的框
|
72 |
+
with gr.Column(scale=3):
|
73 |
+
# 右侧对话区域
|
74 |
+
gr.Markdown(
|
75 |
+
"# Chat with AI\n这是一个简单的聊天模型界面,输入内容后模型将生成相应的回复。"
|
76 |
+
)
|
77 |
+
chatbot = gr.Chatbot(type="messages") # 使用 "messages" 类型记录对话
|
78 |
+
msg = gr.Textbox(label="Your Message") # 用户输入框
|
79 |
+
with gr.Row():
|
80 |
+
send_btn = gr.Button("Send Message") # 发送消息按钮
|
81 |
+
clear = gr.Button("Clear Chat") # 清除聊天记录按钮
|
82 |
+
|
83 |
+
# 设置交互逻辑
|
84 |
+
send_btn.click(
|
85 |
+
chat_with_model,
|
86 |
+
[chatbot, msg, top_k_slider, temp_slider],
|
87 |
+
[chatbot, msg, token_info_box],
|
88 |
+
) # 发送消息
|
89 |
+
msg.submit(
|
90 |
+
chat_with_model,
|
91 |
+
[chatbot, msg, top_k_slider, temp_slider],
|
92 |
+
[chatbot, msg, token_info_box],
|
93 |
+
) # 按回车发送
|
94 |
+
clear.click(lambda: None, None, chatbot, queue=False) # 清除聊天记录
|
95 |
+
|
96 |
+
iface.launch()
|