luxe-demo / app.py
singletongue's picture
Stop showing similar entities to the selected one
ef5d55f verified
raw
history blame
11.5 kB
import re
import unicodedata
from pathlib import Path
import gradio as gr
import torch
import unidic_lite
from fugashi import GenericTagger
from transformers import AutoModelForPreTraining, AutoTokenizer
repo_id = "studio-ousia/luxe"
revision = "ja-v0.3"
ignore_category_patterns = [
r"\d+年",
r"楽曲 [ぁ-ん]",
r"漫画作品 [ぁ-ん]",
r"アニメ作品 [ぁ-ん]",
r"アニメ作品 [ぁ-ん]",
r"の一覧",
r"各国の",
r"各年の",
]
model = AutoModelForPreTraining.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
num_normal_entities = len(tokenizer.entity_vocab) - model.config.num_category_entities
num_category_entities = model.config.num_category_entities
id2normal_entity = {
entity_id: entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id < num_normal_entities
}
id2category_entity = {
entity_id - num_normal_entities: entity
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= num_normal_entities
}
ignore_category_entity_ids = [
entity_id - num_normal_entities
for entity, entity_id in tokenizer.entity_vocab.items()
if entity_id >= num_normal_entities and any(re.search(pattern, entity) for pattern in ignore_category_patterns)
]
entity_embeddings = model.luke.entity_embeddings.entity_embeddings.weight
normal_entity_embeddings = entity_embeddings[:num_normal_entities]
category_entity_embeddings = entity_embeddings[num_normal_entities:]
class MecabTokenizer:
def __init__(self):
unidic_dir = unidic_lite.DICDIR
mecabrc_file = Path(unidic_dir, "mecabrc")
mecab_option = f"-d {unidic_dir} -r {mecabrc_file}"
self.tagger = GenericTagger(mecab_option)
def __call__(self, text: str) -> list[tuple[str, str, tuple[int, int]]]:
outputs = []
end = 0
for node in self.tagger(text):
word = node.surface.strip()
pos = node.feature[0]
start = text.index(word, end)
end = start + len(word)
outputs.append((word, pos, (start, end)))
return outputs
mecab_tokenizer = MecabTokenizer()
def normalize_text(text: str) -> str:
return unicodedata.normalize("NFKC", text)
def get_texts_from_file(file_path):
texts = []
with open(file_path) as f:
for line in f:
line = line.strip()
if line:
texts.append(normalize_text(line))
return texts
def get_noun_spans_from_text(text: str) -> list[tuple[int, int]]:
last_pos = None
noun_spans = []
for word, pos, (start, end) in mecab_tokenizer(text):
if pos == "名詞":
if len(noun_spans) > 0 and last_pos == "名詞":
noun_spans[-1] = (noun_spans[-1][0], end)
else:
noun_spans.append((start, end))
last_pos = pos
return noun_spans
def get_token_spans(text: str) -> list[tuple[int, int]]:
token_spans = []
end = 0
for token in tokenizer.tokenize(text):
token = token.removeprefix("##")
start = text.index(token, end)
end = start + len(token)
token_spans.append((start, end))
return [(0, 0)] + token_spans + [(end, end)] # count for "[CLS]" and "[SEP]"
def get_predicted_entity_spans(
ner_logits: torch.Tensor, token_spans: list[tuple[int, int]], entity_span_sensitivity: float = 1.0
) -> list[tuple[int, int]]:
length = ner_logits.size(-1)
assert ner_logits.size() == (length, length) # not batched
ner_probs = torch.sigmoid(ner_logits).triu()
probs_sorted, sort_idxs = ner_probs.flatten().sort(descending=True)
predicted_entity_spans = []
for p, i in zip(probs_sorted, sort_idxs.tolist()):
if p < 10.0 ** (-1.0 * entity_span_sensitivity):
break
start_idx = i // length
end_idx = i % length
start = token_spans[start_idx][0]
end = token_spans[end_idx][1]
for ex_start, ex_end in predicted_entity_spans:
if not (start < end <= ex_start or ex_end <= start < end):
break
else:
predicted_entity_spans.append((start, end))
return sorted(predicted_entity_spans)
def get_topk_entities_from_texts(
texts: list[str], k: int = 5, entity_span_sensitivity: float = 1.0
) -> tuple[list[list[tuple[int, int]]], list[list[str]], list[list[str]], list[list[list[str]]]]:
batch_entity_spans: list[list[tuple[int, int]]] = []
topk_normal_entities: list[list[str]] = []
topk_category_entities: list[list[str]] = []
topk_span_entities: list[list[list[str]]] = []
for text in texts:
tokenized_examples = tokenizer(text, return_tensors="pt")
model_outputs = model(**tokenized_examples)
token_spans = get_token_spans(text)
entity_spans = get_predicted_entity_spans(model_outputs.ner_logits[0], token_spans, entity_span_sensitivity)
batch_entity_spans.append(entity_spans)
tokenized_examples = tokenizer(text, entity_spans=entity_spans or None, return_tensors="pt")
model_outputs = model(**tokenized_examples)
model_outputs.topic_category_logits[:, ignore_category_entity_ids] = float("-inf")
_, topk_normal_entity_ids = model_outputs.topic_entity_logits[0].topk(k)
topk_normal_entities.append([id2normal_entity[id_] for id_ in topk_normal_entity_ids.tolist()])
_, topk_category_entity_ids = model_outputs.topic_category_logits[0].topk(k)
topk_category_entities.append([id2category_entity[id_] for id_ in topk_category_entity_ids.tolist()])
if model_outputs.entity_logits is not None:
_, topk_span_entity_ids = model_outputs.entity_logits[0, :, :500000].topk(k)
topk_span_entities.append(
[[id2normal_entity[id_] for id_ in ids] for ids in topk_span_entity_ids.tolist()]
)
else:
topk_span_entities.append([])
return batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
def get_selected_entity(evt: gr.SelectData):
return evt.value[0]
def get_similar_entities(query_entity: str, k: int = 10) -> list[str]:
query_entity_id = tokenizer.entity_vocab[query_entity]
if query_entity_id < num_normal_entities:
topk_entity_scores = normal_entity_embeddings[query_entity_id] @ normal_entity_embeddings.T
topk_entity_ids = topk_entity_scores.topk(k + 1).indices[1:]
topk_entities = [id2normal_entity[entity_id] for entity_id in topk_entity_ids.tolist()]
else:
query_entity_id -= num_normal_entities
topk_entity_scores = category_entity_embeddings[query_entity_id] @ category_entity_embeddings.T
topk_entity_scores[ignore_category_entity_ids] = float("-inf")
topk_entity_ids = topk_entity_scores.topk(k + 1).indices[1:]
topk_entities = [id2category_entity[entity_id] for entity_id in topk_entity_ids.tolist()]
return topk_entities
with gr.Blocks() as demo:
gr.Markdown("## テキスト(直接入力またはファイルアップロード)")
texts = gr.State([])
topk = gr.State(5)
entity_span_sensitivity = gr.State(1.0)
batch_entity_spans = gr.State([])
topk_normal_entities = gr.State([])
topk_category_entities = gr.State([])
topk_span_entities = gr.State([])
selected_entity = gr.State()
similar_entities = gr.State([])
text_input = gr.Textbox(label="Input Text")
text_input.change(fn=lambda text: [normalize_text(text)], inputs=text_input, outputs=texts)
texts_file = gr.File(label="Input Texts")
texts_file.change(fn=get_texts_from_file, inputs=texts_file, outputs=texts)
topk_input = gr.Number(5, label="Top K", interactive=True)
topk_input.change(fn=lambda val: val, inputs=topk_input, outputs=topk)
entity_span_sensitivity_input = gr.Slider(
minimum=0.1, maximum=5.0, value=1.0, step=0.1, label="Entity Span Sensitivity", interactive=True
)
entity_span_sensitivity_input.change(
fn=lambda val: val, inputs=entity_span_sensitivity_input, outputs=entity_span_sensitivity
)
texts.change(
fn=get_topk_entities_from_texts,
inputs=[texts, topk, entity_span_sensitivity],
outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
topk.change(
fn=get_topk_entities_from_texts,
inputs=[texts, topk, entity_span_sensitivity],
outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
entity_span_sensitivity.change(
fn=get_topk_entities_from_texts,
inputs=[texts, topk, entity_span_sensitivity],
outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
)
topk_input.change(inputs=topk_input, outputs=topk)
gr.Markdown("---")
gr.Markdown("## 出力エンティティ")
@gr.render(inputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities])
def render_topk_entities(
texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
):
for text, entity_spans, normal_entities, category_entities, span_entities in zip(
texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
):
highlighted_text_value = []
cur = 0
for start, end in entity_spans:
if cur < start:
highlighted_text_value.append((text[cur:start], None))
highlighted_text_value.append((text[start:end], "Entity"))
cur = end
if cur < len(text):
highlighted_text_value.append((text[cur:], None))
gr.HighlightedText(
value=highlighted_text_value, color_map={"Entity": "green"}, combine_adjacent=False, label="Text"
)
# gr.Textbox(text, label="Text")
gr.Dataset(
label="Topic Entities", components=["text"], samples=[[entity] for entity in normal_entities]
).select(fn=get_selected_entity, outputs=selected_entity)
gr.Dataset(
label="Topic Categories", components=["text"], samples=[[entity] for entity in category_entities]
).select(fn=get_selected_entity, outputs=selected_entity)
span_texts = [text[start:end] for start, end in entity_spans]
for span_text, entities in zip(span_texts, span_entities):
gr.Dataset(
label=f"Span Entities for {span_text}",
components=["text"],
samples=[[entity] for entity in entities],
).select(fn=get_selected_entity, outputs=selected_entity)
# gr.Markdown("---")
# gr.Markdown("## 選択されたエンティティの類似エンティティ")
# selected_entity.change(fn=get_similar_entities, inputs=selected_entity, outputs=similar_entities)
# @gr.render(inputs=[selected_entity, similar_entities])
# def render_similar_entities(selected_entity, similar_entities):
# gr.Textbox(selected_entity, label="Selected Entity")
# gr.Dataset(label="Similar Entities", components=["text"], samples=[[entity] for entity in similar_entities])
demo.launch()