File size: 20,788 Bytes
d6ab44d
c5df237
17276eb
d6ab44d
647335c
 
dde7d2a
aaaa32a
d6ab44d
 
647335c
6234321
647335c
dde7d2a
 
 
6234321
d6ab44d
6234321
dde7d2a
643182d
c5df237
6234321
 
c5df237
 
 
 
 
 
 
 
 
 
dde7d2a
 
 
 
 
647335c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17276eb
 
 
 
6234321
d8550bf
 
6234321
 
d6ab44d
dde7d2a
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
dde7d2a
 
 
 
647335c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaaa32a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ab44d
 
 
 
aaaa32a
d6ab44d
 
aaaa32a
d6ab44d
 
aaaa32a
d6ab44d
 
 
 
 
aaaa32a
 
 
 
647335c
d6ab44d
 
 
 
 
aaaa32a
 
647335c
 
 
dde7d2a
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde7d2a
aaaa32a
 
 
 
 
647335c
aaaa32a
dde7d2a
 
d6ab44d
 
 
 
 
dde7d2a
d6ab44d
 
 
 
 
 
dde7d2a
aaaa32a
6234321
 
d6ab44d
6234321
 
 
 
 
 
 
 
aaaa32a
 
 
 
 
647335c
aaaa32a
dde7d2a
 
 
 
 
 
 
 
 
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde7d2a
 
 
 
d6ab44d
dde7d2a
c5df237
 
 
dde7d2a
 
 
 
 
 
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643182d
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde7d2a
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
 
 
dde7d2a
d6ab44d
 
 
aaaa32a
 
643182d
d6ab44d
aaaa32a
dde7d2a
 
647335c
d6ab44d
dde7d2a
 
 
d6ab44d
 
 
 
643182d
 
 
 
 
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643182d
 
 
d6ab44d
643182d
 
 
 
 
17276eb
dde7d2a
aaaa32a
 
 
 
6234321
aaaa32a
647335c
 
d6ab44d
aaaa32a
 
 
 
d6ab44d
aaaa32a
647335c
aaaa32a
 
d6ab44d
6234321
 
 
 
d6ab44d
aaaa32a
 
 
dde7d2a
 
 
 
aaaa32a
 
 
 
 
 
647335c
aaaa32a
 
 
 
 
 
 
 
 
 
 
 
647335c
aaaa32a
dde7d2a
647335c
 
d6ab44d
 
 
 
 
 
 
 
 
 
 
 
647335c
aaaa32a
 
647335c
d6ab44d
aaaa32a
 
647335c
dde7d2a
ef5d55f
 
dde7d2a
ef5d55f
dde7d2a
ef5d55f
 
 
 
dde7d2a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import csv
import re
import unicodedata
from collections import defaultdict
from pathlib import Path

import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import unidic_lite
from bm25s.hf import BM25HF, TokenizerHF
from fugashi import GenericTagger
from transformers import AutoModelForPreTraining, AutoTokenizer


ALIAS_SEP = "|"
ENTITY_SPECIAL_TOKENS = ["[PAD]", "[UNK]", "[MASK]", "[MASK2]"]

repo_id = "studio-ousia/luxe"
revision = "ja-v0.3.1"

nayose_repo_id = "studio-ousia/luxe-nayose-bm25"

ignore_category_patterns = [
    r"\d+年",
    r"楽曲 [ぁ-ん]",
    r"漫画作品 [ぁ-ん]",
    r"アニメ作品 [ぁ-ん]",
    r"アニメ作品 [ぁ-ん]",
    r"の一覧",
    r"各国の",
    r"各年の",
]

model = AutoModelForPreTraining.from_pretrained(repo_id, revision=revision, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(repo_id, revision=revision, trust_remote_code=True)


class MecabTokenizer:
    def __init__(self):
        unidic_dir = unidic_lite.DICDIR
        mecabrc_file = Path(unidic_dir, "mecabrc")
        mecab_option = f"-d {unidic_dir} -r {mecabrc_file}"
        self.tagger = GenericTagger(mecab_option)

    def __call__(self, text: str) -> list[tuple[str, str, tuple[int, int]]]:
        outputs = []

        end = 0
        for node in self.tagger(text):
            word = node.surface.strip()
            pos = node.feature[0]
            start = text.index(word, end)
            end = start + len(word)
            outputs.append((word, pos, (start, end)))

        return outputs


mecab_tokenizer = MecabTokenizer()


def normalize_text(text: str) -> str:
    return unicodedata.normalize("NFKC", text)


bm25_tokenizer = TokenizerHF(lower=True, splitter=tokenizer.tokenize, stopwords=None, stemmer=None)
bm25_tokenizer.load_vocab_from_hub("studio-ousia/luxe-nayose-bm25")
bm25_retriever = BM25HF.load_from_hub("studio-ousia/luxe-nayose-bm25")


def get_texts_from_file(file_path: str | None):
    texts = []
    if file_path is not None:
        try:
            with open(file_path, newline="") as f:
                reader = csv.DictReader(f, fieldnames=["text"])
                for row in reader:
                    text = normalize_text(row["text"]).strip()
                    if text != "":
                        texts.append(text)
        except Exception as e:
            gr.Warning("ファイルを正しく読み込めませんでした。")
            print(e)
            texts = []

    return texts


def get_noun_spans_from_text(text: str) -> list[tuple[int, int]]:
    last_pos = None
    noun_spans = []

    for word, pos, (start, end) in mecab_tokenizer(text):
        if pos == "名詞":
            if len(noun_spans) > 0 and last_pos == "名詞":
                noun_spans[-1] = (noun_spans[-1][0], end)
            else:
                noun_spans.append((start, end))

        last_pos = pos

    return noun_spans


def get_token_spans(text: str) -> list[tuple[int, int]]:
    token_spans = []
    end = 0
    for token in tokenizer.tokenize(text):
        token = token.removeprefix("##")
        start = text.index(token, end)
        end = start + len(token)
        token_spans.append((start, end))

    return [(0, 0)] + token_spans + [(end, end)]  # count for "[CLS]" and "[SEP]"


def get_predicted_entity_spans(
    ner_logits: torch.Tensor, token_spans: list[tuple[int, int]], entity_span_sensitivity: float = 1.0
) -> list[tuple[int, int]]:
    length = ner_logits.size(-1)
    assert ner_logits.size() == (length, length)  # not batched

    ner_probs = torch.sigmoid(ner_logits).triu()
    probs_sorted, sort_idxs = ner_probs.flatten().sort(descending=True)

    predicted_entity_spans = []
    if entity_span_sensitivity > 0.0:
        for p, i in zip(probs_sorted, sort_idxs.tolist()):
            if p < 10.0 ** (-1.0 * entity_span_sensitivity):
                break

            start_idx = i // length
            end_idx = i % length

            start = token_spans[start_idx][0]
            end = token_spans[end_idx][1]

            for ex_start, ex_end in predicted_entity_spans:
                if not (start < end <= ex_start or ex_end <= start < end):
                    break
            else:
                predicted_entity_spans.append((start, end))

    return sorted(predicted_entity_spans)


def get_topk_entities_from_texts(
    texts: list[str],
    k: int = 5,
    entity_span_sensitivity: float = 1.0,
    nayose_coef: float = 1.0,
    entities_are_replaced: bool = False,
) -> tuple[list[list[tuple[int, int]]], list[list[str]], list[list[str]], list[list[list[str]]]]:
    batch_entity_spans: list[list[tuple[int, int]]] = []
    topk_normal_entities: list[list[str]] = []
    topk_category_entities: list[list[str]] = []
    topk_span_entities: list[list[list[str]]] = []

    id2normal_entity = {
        entity_id: entity
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id < model.config.num_normal_entities
    }
    id2category_entity = {
        entity_id - model.config.num_normal_entities: entity
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id >= model.config.num_normal_entities
    }
    ignore_category_entity_ids = [
        entity_id - model.config.num_normal_entities
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id >= model.config.num_normal_entities
        and any(re.search(pattern, entity) for pattern in ignore_category_patterns)
    ]

    for text in texts:
        tokenized_examples = tokenizer(text, return_tensors="pt")
        model_outputs = model(**tokenized_examples)
        token_spans = get_token_spans(text)
        entity_spans = get_predicted_entity_spans(model_outputs.ner_logits[0], token_spans, entity_span_sensitivity)
        batch_entity_spans.append(entity_spans)

        tokenized_examples = tokenizer(text, entity_spans=entity_spans or None, return_tensors="pt")
        model_outputs = model(**tokenized_examples)

        if model_outputs.topic_entity_logits is not None:
            _, topk_normal_entity_ids = model_outputs.topic_entity_logits[0].topk(k)
            topk_normal_entities.append([id2normal_entity[id_] for id_ in topk_normal_entity_ids.tolist()])
        else:
            topk_normal_entities.append([])

        if model_outputs.topic_category_logits is not None:
            model_outputs.topic_category_logits[:, ignore_category_entity_ids] = float("-inf")
            _, topk_category_entity_ids = model_outputs.topic_category_logits[0].topk(k)
            topk_category_entities.append([id2category_entity[id_] for id_ in topk_category_entity_ids.tolist()])
        else:
            topk_category_entities.append([])

        if model_outputs.entity_logits is not None:
            span_entity_logits = model_outputs.entity_logits[0, :, :500000]

            if nayose_coef > 0.0 and not entities_are_replaced:
                nayose_queries = ["ja:" + text[start:end] for start, end in entity_spans]
                nayose_query_tokens = bm25_tokenizer.tokenize(nayose_queries)
                nayose_scores = torch.vstack(
                    [torch.from_numpy(bm25_retriever.get_scores(tokens)) for tokens in nayose_query_tokens]
                )
                span_entity_logits += nayose_coef * nayose_scores

            _, topk_span_entity_ids = span_entity_logits.topk(k)
            topk_span_entities.append(
                [[id2normal_entity[id_] for id_ in ids] for ids in topk_span_entity_ids.tolist()]
            )
        else:
            topk_span_entities.append([])

    return batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities


def get_selected_entity(evt: gr.SelectData):
    return evt.value[0]


def get_similar_entities(query_entity: str, k: int = 10) -> list[str]:
    query_entity_id = tokenizer.entity_vocab[query_entity]

    id2normal_entity = {
        entity_id: entity
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id < model.config.num_normal_entities
    }
    id2category_entity = {
        entity_id - model.config.num_normal_entities: entity
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id >= model.config.num_normal_entities
    }
    ignore_category_entity_ids = [
        entity_id - model.config.num_normal_entities
        for entity, entity_id in tokenizer.entity_vocab.items()
        if entity_id >= model.config.num_normal_entities
        and any(re.search(pattern, entity) for pattern in ignore_category_patterns)
    ]
    entity_embeddings = model.luke.entity_embeddings.entity_embeddings.weight
    normal_entity_embeddings = entity_embeddings[: model.config.num_normal_entities]
    category_entity_embeddings = entity_embeddings[model.config.num_normal_entities :]

    if query_entity_id < model.config.num_normal_entities:
        topk_entity_scores = normal_entity_embeddings[query_entity_id] @ normal_entity_embeddings.T
        topk_entity_ids = topk_entity_scores.topk(k + 1).indices[1:]
        topk_entities = [id2normal_entity[entity_id] for entity_id in topk_entity_ids.tolist()]
    else:
        query_entity_id -= model.config.num_normal_entities
        topk_entity_scores = category_entity_embeddings[query_entity_id] @ category_entity_embeddings.T

        topk_entity_scores[ignore_category_entity_ids] = float("-inf")

        topk_entity_ids = topk_entity_scores.topk(k + 1).indices[1:]
        topk_entities = [id2category_entity[entity_id] for entity_id in topk_entity_ids.tolist()]

    return topk_entities


def get_new_entity_text_pairs_from_file(file_path: str | None) -> list[list[str]]:
    new_entity_text_pairs = []
    if file_path is not None:
        try:
            with open(file_path, newline="") as f:
                reader = csv.DictReader(f, fieldnames=["entity", "text"])
                for row in reader:
                    entity = normalize_text(row["entity"]).strip()
                    text = normalize_text(row["text"]).strip()
                    if entity != "" and text != "":
                        new_entity_text_pairs.append([entity, text])
        except Exception as e:
            gr.Warning("ファイルを正しく読み込めませんでした。")
            print(e)
            new_entity_text_pairs = []

    return new_entity_text_pairs


def replace_entities(
    new_entity_text_pairs: list[tuple[str, str]],
    new_num_category_entities: int = 0,
    new_entity_counts: list[int] | None = None,
    new_padding_idx: int = 0,
) -> True:
    gr.Info("トークナイザのエンティティの語彙を置き換えています...", duration=5)
    new_entity_tokens = ENTITY_SPECIAL_TOKENS + [entity for entity, _ in new_entity_text_pairs]

    new_entity_vocab = {}
    for entity in new_entity_tokens:
        if entity not in new_entity_vocab:
            new_entity_vocab[entity] = len(new_entity_vocab)

    new_entity_vocab = {entity: entity_id for entity_id, entity in enumerate(new_entity_tokens)}

    tokenizer.entity_vocab = new_entity_vocab
    tokenizer.entity_pad_token_id = tokenizer.entity_vocab["[PAD]"]
    tokenizer.entity_unk_token_id = tokenizer.entity_vocab["[UNK]"]
    tokenizer.entity_mask_token_id = tokenizer.entity_vocab["[MASK]"]
    tokenizer.entity_mask2_token_id = tokenizer.entity_vocab["[MASK2]"]

    gr.Info("モデルのエンティティの埋め込みを置き換えています...", duration=5)
    new_entity_embeddings_dict = defaultdict(list)

    for entity_special_token in ENTITY_SPECIAL_TOKENS:
        entity_special_token_id = tokenizer.entity_vocab[entity_special_token]
        new_entity_embeddings_dict[entity_special_token_id].append(
            model.luke.entity_embeddings.entity_embeddings.weight.data[entity_special_token_id]
        )

    for entity, text in new_entity_text_pairs:
        entity_id = tokenizer.entity_vocab[entity]
        tokenized_inputs = tokenizer(text, return_tensors="pt")
        model_outputs = model(**tokenized_inputs)
        entity_embeddings = model.entity_predictions.transform(model_outputs.last_hidden_state[:, 0])
        new_entity_embeddings_dict[entity_id].append(entity_embeddings[0])

    assert len(new_entity_embeddings_dict) == len(tokenizer.entity_vocab)

    new_entity_embeddings = torch.vstack(
        [
            sum(new_entity_embeddings_dict[i]) / len(new_entity_embeddings_dict[i])
            for i in range(len(new_entity_embeddings_dict))
        ]
    )
    new_entity_vocab_size, new_entity_emb_size = new_entity_embeddings.size()
    assert new_entity_vocab_size == len(tokenizer.entity_vocab)

    new_num_normal_entities = new_entity_vocab_size - new_num_category_entities

    if new_entity_counts is not None and any(count < 1 for count in new_entity_counts):
        raise ValueError("All items in new_entity_counts must be greater than zero")

    if model.config.normalize_entity_embeddings:
        new_entity_embeddings = F.normalize(new_entity_embeddings)

    new_entity_embeddings_module = nn.Embedding(
        new_entity_vocab_size,
        new_entity_emb_size,
        padding_idx=new_padding_idx,
        device=model.luke.entity_embeddings.entity_embeddings.weight.device,
        dtype=model.luke.entity_embeddings.entity_embeddings.weight.dtype,
    )
    new_entity_embeddings_module.weight.data = new_entity_embeddings.data
    model.luke.entity_embeddings.entity_embeddings = new_entity_embeddings_module

    new_entity_decoder_module = nn.Linear(new_entity_emb_size, new_entity_vocab_size, bias=False)
    model.entity_predictions.decoder = new_entity_decoder_module
    model.entity_predictions.bias = nn.Parameter(torch.zeros(new_entity_vocab_size))
    model.tie_weights()

    if hasattr(model, "entity_log_probs"):
        del model.entity_log_probs

    model.config.entity_vocab_size = new_entity_vocab_size
    model.config.num_normal_entities = new_num_normal_entities
    model.config.num_category_entities = new_num_category_entities
    model.config.entity_counts = new_entity_counts

    gr.Info("モデルとトークナイザのエンティティの置き換えが完了しました", duration=5)

    return True


with gr.Blocks() as demo:
    texts = gr.State([])

    entities_are_replaced = gr.State(False)

    topk = gr.State(5)
    entity_span_sensitivity = gr.State(1.0)
    nayose_coef = gr.State(1.0)

    batch_entity_spans = gr.State([])
    topk_normal_entities = gr.State([])
    topk_category_entities = gr.State([])
    topk_span_entities = gr.State([])

    selected_entity = gr.State()
    similar_entities = gr.State([])

    gr.Markdown("# 📝 LUXE Demo")

    gr.Markdown("## 入力テキスト")

    with gr.Tab(label="直接入力"):
        text_input = gr.Textbox(label="入力テキスト")
    with gr.Tab(label="ファイルアップロード"):
        texts_file = gr.File(label="入力テキストファイル")

    with gr.Accordion(label="LUXEのエンティティ語彙を置き換える", open=False):
        new_entity_text_pairs_file = gr.File(label="エンティティと説明文のCSVファイル")
        new_entity_text_pairs_input = gr.Dataframe(
            # value=sample_new_entity_text_pairs,
            headers=["entity", "text"],
            col_count=(2, "fixed"),
            type="array",
            label="エンティティと説明文",
            interactive=True,
        )
        replace_entity_button = gr.Button(value="エンティティ語彙を置き換える")

    new_entity_text_pairs_file.change(
        fn=get_new_entity_text_pairs_from_file, inputs=new_entity_text_pairs_file, outputs=new_entity_text_pairs_input
    )
    replace_entity_button.click(fn=replace_entities, inputs=new_entity_text_pairs_input, outputs=entities_are_replaced)

    with gr.Accordion(label="ハイパーパラメータ", open=False):
        topk_input = gr.Number(5, label="エンティティ件数", interactive=True)
        entity_span_sensitivity_input = gr.Slider(
            minimum=0.0, maximum=5.0, value=1.0, step=0.1, label="エンティティ検出の積極度", interactive=True
        )
        nayose_coef_input = gr.Slider(
            minimum=0.0, maximum=2.0, value=1.0, step=0.1, label="文字列一致の優先度", interactive=True
        )

    text_input.change(fn=lambda text: [normalize_text(text)], inputs=text_input, outputs=texts)
    texts_file.change(fn=get_texts_from_file, inputs=texts_file, outputs=texts)
    topk_input.change(fn=lambda val: val, inputs=topk_input, outputs=topk)
    entity_span_sensitivity_input.change(
        fn=lambda val: val, inputs=entity_span_sensitivity_input, outputs=entity_span_sensitivity
    )
    nayose_coef_input.change(fn=lambda val: val, inputs=nayose_coef_input, outputs=nayose_coef)

    texts.change(
        fn=get_topk_entities_from_texts,
        inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
        outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
    )
    topk.change(
        fn=get_topk_entities_from_texts,
        inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
        outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
    )
    entity_span_sensitivity.change(
        fn=get_topk_entities_from_texts,
        inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
        outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
    )
    nayose_coef.change(
        fn=get_topk_entities_from_texts,
        inputs=[texts, topk, entity_span_sensitivity, nayose_coef, entities_are_replaced],
        outputs=[batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities],
    )
    topk_input.change(inputs=topk_input, outputs=topk)

    gr.Markdown("---")
    gr.Markdown("## 出力エンティティ")

    @gr.render(inputs=[texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities])
    def render_topk_entities(
        texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
    ):
        for text, entity_spans, normal_entities, category_entities, span_entities in zip(
            texts, batch_entity_spans, topk_normal_entities, topk_category_entities, topk_span_entities
        ):
            highlighted_text_value = []
            cur = 0
            for start, end in entity_spans:
                if cur < start:
                    highlighted_text_value.append((text[cur:start], None))

                highlighted_text_value.append((text[start:end], "Entity"))
                cur = end

            if cur < len(text):
                highlighted_text_value.append((text[cur:], None))

            gr.HighlightedText(
                value=highlighted_text_value, color_map={"Entity": "green"}, combine_adjacent=False, label="Text"
            )

            # gr.Textbox(text, label="Text")
            if normal_entities:
                gr.Dataset(
                    label="テキスト全体に関連するエンティティ",
                    components=["text"],
                    samples=[[entity] for entity in normal_entities],
                ).select(fn=get_selected_entity, outputs=selected_entity)
            if category_entities:
                gr.Dataset(
                    label="テキスト全体に関連するカテゴリ",
                    components=["text"],
                    samples=[[entity] for entity in category_entities],
                ).select(fn=get_selected_entity, outputs=selected_entity)

            span_texts = [text[start:end] for start, end in entity_spans]
            for span_text, entities in zip(span_texts, span_entities):
                gr.Dataset(
                    label=f"「{span_text}」に対応するエンティティ",
                    components=["text"],
                    samples=[[entity] for entity in entities],
                ).select(fn=get_selected_entity, outputs=selected_entity)

    #     gr.Markdown("---")
    #     gr.Markdown("## 選択されたエンティティの類似エンティティ")

    # selected_entity.change(fn=get_similar_entities, inputs=selected_entity, outputs=similar_entities)

    # @gr.render(inputs=[selected_entity, similar_entities])
    # def render_similar_entities(selected_entity, similar_entities):
    #     gr.Textbox(selected_entity, label="Selected Entity")
    #     gr.Dataset(label="Similar Entities", components=["text"], samples=[[entity] for entity in similar_entities])


demo.launch()