Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -65,14 +65,14 @@ with mod_container:
|
|
65 |
# let's pass the input to the loaded_model with torch compiled with cuda
|
66 |
if prompt:
|
67 |
# let's get the result
|
68 |
-
simscore = PathFinder.predict([prompt])
|
69 |
|
70 |
from sentence_transformers import CrossEncoder
|
71 |
loaded_model = CrossEncoder("cross-encoder/stsb-roberta-base")
|
72 |
sentence_pairs = []
|
73 |
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
74 |
sentence_pairs.append([sentence1, sentence2])
|
75 |
-
|
|
|
76 |
# sorting the df to get highest scoring xpath_container
|
77 |
data['SBERT CrossEncoder_Score'] = loaded_model.predict(sentence_pairs)
|
78 |
most_acc = data.head(5)
|
|
|
65 |
# let's pass the input to the loaded_model with torch compiled with cuda
|
66 |
if prompt:
|
67 |
# let's get the result
|
|
|
68 |
|
69 |
from sentence_transformers import CrossEncoder
|
70 |
loaded_model = CrossEncoder("cross-encoder/stsb-roberta-base")
|
71 |
sentence_pairs = []
|
72 |
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
73 |
sentence_pairs.append([sentence1, sentence2])
|
74 |
+
|
75 |
+
simscore = PathFinder.predict([prompt])
|
76 |
# sorting the df to get highest scoring xpath_container
|
77 |
data['SBERT CrossEncoder_Score'] = loaded_model.predict(sentence_pairs)
|
78 |
most_acc = data.head(5)
|