Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update strings.py
Browse files- strings.py +144 -1
    	
        strings.py
    CHANGED
    
    | @@ -1,3 +1,13 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            dfs_code = r"""
         | 
| 2 | 
             
            def dfs(visited, graph, node):  #function for dfs 
         | 
| 3 | 
             
                if node not in visited:
         | 
| @@ -5,4 +15,137 @@ def dfs(visited, graph, node):  #function for dfs | |
| 5 | 
             
                    visited.add(node)
         | 
| 6 | 
             
                    for neighbour in graph[node]:
         | 
| 7 | 
             
                        dfs(visited, graph, neighbour)
         | 
| 8 | 
            -
            """
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            def pygen_func(nl_code_intent):
         | 
| 2 | 
            +
                pass # TODO: generate code PL from intent NL + search in corpus
         | 
| 3 | 
            +
                # inputs = {'code_nl': code_nl}    
         | 
| 4 | 
            +
                # payload = json.dumps(inputs)
         | 
| 5 | 
            +
                # prediction = req.request(CT5_METHOD, CT5_URL, data=payload)
         | 
| 6 | 
            +
                # prediction = req.request(CT5_METHOD, CT5_URL, json=req_data)
         | 
| 7 | 
            +
                # answer = json.loads(prediction.content.decode("utf-8"))
         | 
| 8 | 
            +
                # return str(answer)
         | 
| 9 | 
            +
                # CT5_URL = "https://api-inference.huggingface.co/models/nielsr/codet5-small-code-summarization-ruby"
         | 
| 10 | 
            +
             | 
| 11 | 
             
            dfs_code = r"""
         | 
| 12 | 
             
            def dfs(visited, graph, node):  #function for dfs 
         | 
| 13 | 
             
                if node not in visited:
         | 
|  | |
| 15 | 
             
                    visited.add(node)
         | 
| 16 | 
             
                    for neighbour in graph[node]:
         | 
| 17 | 
             
                        dfs(visited, graph, neighbour)
         | 
| 18 | 
            +
            """
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            function_code = r"""
         | 
| 21 | 
            +
            def write_documents(self, documents: Union[List[dict], List[Document]], index: Optional[str] = None,
         | 
| 22 | 
            +
                                    batch_size: int = 10_000, duplicate_documents: Optional[str] = None):
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                    if index and not self.client.indices.exists(index=index):
         | 
| 25 | 
            +
                        self._create_document_index(index)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                    if index is None:
         | 
| 28 | 
            +
                        index = self.index
         | 
| 29 | 
            +
                    duplicate_documents = duplicate_documents or self.duplicate_documents
         | 
| 30 | 
            +
                    assert duplicate_documents in self.duplicate_documents_options, 
         | 
| 31 | 
            +
                        f"duplicate_documents parameter must be {', '.join(self.duplicate_documents_options)}"
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                    field_map = self._create_document_field_map()
         | 
| 34 | 
            +
                    document_objects = [Document.from_dict(d, field_map=field_map) if isinstance(d, dict) else d for d in documents]
         | 
| 35 | 
            +
                    document_objects = self._handle_duplicate_documents(documents=document_objects,
         | 
| 36 | 
            +
                                                                        index=index,
         | 
| 37 | 
            +
                                                                        duplicate_documents=duplicate_documents)
         | 
| 38 | 
            +
                    documents_to_index = []
         | 
| 39 | 
            +
                    for doc in document_objects:
         | 
| 40 | 
            +
                        _doc = {
         | 
| 41 | 
            +
                            "_op_type": "index" if duplicate_documents == 'overwrite' else "create",
         | 
| 42 | 
            +
                            "_index": index,
         | 
| 43 | 
            +
                            **doc.to_dict(field_map=self._create_document_field_map())
         | 
| 44 | 
            +
                        }  # type: Dict[str, Any]
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                        # cast embedding type as ES cannot deal with np.array
         | 
| 47 | 
            +
                        if _doc[self.embedding_field] is not None:
         | 
| 48 | 
            +
                            if type(_doc[self.embedding_field]) == np.ndarray:
         | 
| 49 | 
            +
                                _doc[self.embedding_field] = _doc[self.embedding_field].tolist()
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                        # rename id for elastic
         | 
| 52 | 
            +
                        _doc["_id"] = str(_doc.pop("id"))
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                        # don't index query score and empty fields
         | 
| 55 | 
            +
                        _ = _doc.pop("score", None)
         | 
| 56 | 
            +
                        _doc = {k:v for k,v in _doc.items() if v is not None}
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                        # In order to have a flat structure in elastic + similar behaviour to the other DocumentStores,
         | 
| 59 | 
            +
                        # we "unnest" all value within "meta"
         | 
| 60 | 
            +
                        if "meta" in _doc.keys():
         | 
| 61 | 
            +
                            for k, v in _doc["meta"].items():
         | 
| 62 | 
            +
                                _doc[k] = v
         | 
| 63 | 
            +
                            _doc.pop("meta")
         | 
| 64 | 
            +
                        documents_to_index.append(_doc)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                        # Pass batch_size number of documents to bulk
         | 
| 67 | 
            +
                        if len(documents_to_index) % batch_size == 0:
         | 
| 68 | 
            +
                            bulk(self.client, documents_to_index, request_timeout=300, refresh=self.refresh_type)
         | 
| 69 | 
            +
                            documents_to_index = []
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    if documents_to_index:
         | 
| 72 | 
            +
                        bulk(self.client, documents_to_index, request_timeout=300, refresh=self.refresh_type)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            """
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            real_docstring = r"""
         | 
| 77 | 
            +
                    Indexes documents for later queries in Elasticsearch.
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    Behaviour if a document with the same ID already exists in ElasticSearch:
         | 
| 80 | 
            +
                    a) (Default) Throw Elastic's standard error message for duplicate IDs.
         | 
| 81 | 
            +
                    b) If `self.update_existing_documents=True` for DocumentStore: Overwrite existing documents.
         | 
| 82 | 
            +
                    (This is only relevant if you pass your own ID when initializing a `Document`.
         | 
| 83 | 
            +
                    If don't set custom IDs for your Documents or just pass a list of dictionaries here,
         | 
| 84 | 
            +
                    they will automatically get UUIDs assigned. See the `Document` class for details)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    :param documents: a list of Python dictionaries or a list of Haystack Document objects.
         | 
| 87 | 
            +
                                      For documents as dictionaries, the format is {"content": "<the-actual-text>"}.
         | 
| 88 | 
            +
                                      Optionally: Include meta data via {"content": "<the-actual-text>",
         | 
| 89 | 
            +
                                      "meta":{"name": "<some-document-name>, "author": "somebody", ...}}
         | 
| 90 | 
            +
                                      It can be used for filtering and is accessible in the responses of the Finder.
         | 
| 91 | 
            +
                                      Advanced: If you are using your own Elasticsearch mapping, the key names in the dictionary
         | 
| 92 | 
            +
                                      should be changed to what you have set for self.content_field and self.name_field.
         | 
| 93 | 
            +
                    :param index: Elasticsearch index where the documents should be indexed. If not supplied, self.index will be used.
         | 
| 94 | 
            +
                    :param batch_size: Number of documents that are passed to Elasticsearch's bulk function at a time.
         | 
| 95 | 
            +
                    :param duplicate_documents: Handle duplicates document based on parameter options.
         | 
| 96 | 
            +
                                                Parameter options : ( 'skip','overwrite','fail')
         | 
| 97 | 
            +
                                                skip: Ignore the duplicates documents
         | 
| 98 | 
            +
                                                overwrite: Update any existing documents with the same ID when adding documents.
         | 
| 99 | 
            +
                                                fail: an error is raised if the document ID of the document being added already
         | 
| 100 | 
            +
                                                exists.
         | 
| 101 | 
            +
                    :raises DuplicateDocumentError: Exception trigger on duplicate document
         | 
| 102 | 
            +
                    :return: None
         | 
| 103 | 
            +
            """
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            tree_code = r"""
         | 
| 106 | 
            +
            class Tree:
         | 
| 107 | 
            +
                def __init__(self):
         | 
| 108 | 
            +
                    self.val = None
         | 
| 109 | 
            +
                    self.left = None
         | 
| 110 | 
            +
                    self.right = None    
         | 
| 111 | 
            +
            """
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            insert_code = r"""
         | 
| 114 | 
            +
            def insert(self, val):
         | 
| 115 | 
            +
                if self.val:
         | 
| 116 | 
            +
                    if val < self.val:
         | 
| 117 | 
            +
                        if self.left is None:
         | 
| 118 | 
            +
                            self.left = Tree(val)
         | 
| 119 | 
            +
                        else:
         | 
| 120 | 
            +
                            self.left.insert(val)
         | 
| 121 | 
            +
                    elif val > self.val:
         | 
| 122 | 
            +
                        if self.right is None:
         | 
| 123 | 
            +
                            self.right = Tree(val)
         | 
| 124 | 
            +
                        else:
         | 
| 125 | 
            +
                            self.right.insert(val)
         | 
| 126 | 
            +
                else:
         | 
| 127 | 
            +
                    self.val = val
         | 
| 128 | 
            +
            """
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            display_code = r"""
         | 
| 131 | 
            +
            def display_tree(self: Tree, prefix='value: '):
         | 
| 132 | 
            +
                current_node = self.val
         | 
| 133 | 
            +
                
         | 
| 134 | 
            +
                if self.left:
         | 
| 135 | 
            +
                    self.left.display_tree()
         | 
| 136 | 
            +
                
         | 
| 137 | 
            +
                print(prefix, current_node)
         | 
| 138 | 
            +
                
         | 
| 139 | 
            +
                if self.right:
         | 
| 140 | 
            +
                    self.right.display_tree()
         | 
| 141 | 
            +
                
         | 
| 142 | 
            +
            """
         | 
| 143 | 
            +
             | 
| 144 | 
            +
            article_string = r"""CodeXGLLUE task definition (and dataset): **Code summarization (CodeSearchNet)**: 
         | 
| 145 | 
            +
                
         | 
| 146 | 
            +
            _A model is given the task to generate natural language comments for a programming language code input._
         | 
| 147 | 
            +
                
         | 
| 148 | 
            +
            For further details, see the [CodeXGLUE](https://github.com/microsoft/CodeXGLUE) benchmark dataset and open challenge for code intelligence. 
         | 
| 149 | 
            +
            """
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            descr_string = 'The application takes as input the python code for a function, or a class, and generates a documentation string, or code comment, for it using codeT5 fine tuned for code2text generation. Code to text generation, or code summarization, is a CodeXGLUE generation, or sequence to sequence, downstream task. CodeXGLUE stands for General Language Understanding Evaluation benchmark *for code*, which includes diversified code intelligence downstream inference tasks and datasets.'
         |