pygen / app.py
stmnk's picture
add description
3aaf827
raw
history blame
7.73 kB
import json
import gradio as gr
import requests as req
code_nl = "function for db connection"
CT5_URL = "https://api-inference.huggingface.co/models/stmnk/codet5-small-code-summarization-python"
CT5_METHOD = 'POST'
API_URL = CT5_URL
headers = {"Authorization": "Bearer api_UhCKXKyqxJOpOcbvrZurQFqmVNZRTtxVfl"}
def query(payload):
response = req.post(API_URL, headers=headers, json=payload)
return response.json()
dfs_code = r"""
def dfs(visited, graph, node): #function for dfs
if node not in visited:
print (node)
visited.add(node)
for neighbour in graph[node]:
dfs(visited, graph, neighbour)
"""
function_code = r"""
def write_documents(self, documents: Union[List[dict], List[Document]], index: Optional[str] = None,
batch_size: int = 10_000, duplicate_documents: Optional[str] = None):
if index and not self.client.indices.exists(index=index):
self._create_document_index(index)
if index is None:
index = self.index
duplicate_documents = duplicate_documents or self.duplicate_documents
assert duplicate_documents in self.duplicate_documents_options, \
f"duplicate_documents parameter must be {', '.join(self.duplicate_documents_options)}"
field_map = self._create_document_field_map()
document_objects = [Document.from_dict(d, field_map=field_map) if isinstance(d, dict) else d for d in documents]
document_objects = self._handle_duplicate_documents(documents=document_objects,
index=index,
duplicate_documents=duplicate_documents)
documents_to_index = []
for doc in document_objects:
_doc = {
"_op_type": "index" if duplicate_documents == 'overwrite' else "create",
"_index": index,
**doc.to_dict(field_map=self._create_document_field_map())
} # type: Dict[str, Any]
# cast embedding type as ES cannot deal with np.array
if _doc[self.embedding_field] is not None:
if type(_doc[self.embedding_field]) == np.ndarray:
_doc[self.embedding_field] = _doc[self.embedding_field].tolist()
# rename id for elastic
_doc["_id"] = str(_doc.pop("id"))
# don't index query score and empty fields
_ = _doc.pop("score", None)
_doc = {k:v for k,v in _doc.items() if v is not None}
# In order to have a flat structure in elastic + similar behaviour to the other DocumentStores,
# we "unnest" all value within "meta"
if "meta" in _doc.keys():
for k, v in _doc["meta"].items():
_doc[k] = v
_doc.pop("meta")
documents_to_index.append(_doc)
# Pass batch_size number of documents to bulk
if len(documents_to_index) % batch_size == 0:
bulk(self.client, documents_to_index, request_timeout=300, refresh=self.refresh_type)
documents_to_index = []
if documents_to_index:
bulk(self.client, documents_to_index, request_timeout=300, refresh=self.refresh_type)
"""
task_code = f' Summarize Python: {function_code}'
# task_code = f' Summarize Python: {dfs_code}'
real_docstring = r"""
Indexes documents for later queries in Elasticsearch.
Behaviour if a document with the same ID already exists in ElasticSearch:
a) (Default) Throw Elastic's standard error message for duplicate IDs.
b) If `self.update_existing_documents=True` for DocumentStore: Overwrite existing documents.
(This is only relevant if you pass your own ID when initializing a `Document`.
If don't set custom IDs for your Documents or just pass a list of dictionaries here,
they will automatically get UUIDs assigned. See the `Document` class for details)
:param documents: a list of Python dictionaries or a list of Haystack Document objects.
For documents as dictionaries, the format is {"content": "<the-actual-text>"}.
Optionally: Include meta data via {"content": "<the-actual-text>",
"meta":{"name": "<some-document-name>, "author": "somebody", ...}}
It can be used for filtering and is accessible in the responses of the Finder.
Advanced: If you are using your own Elasticsearch mapping, the key names in the dictionary
should be changed to what you have set for self.content_field and self.name_field.
:param index: Elasticsearch index where the documents should be indexed. If not supplied, self.index will be used.
:param batch_size: Number of documents that are passed to Elasticsearch's bulk function at a time.
:param duplicate_documents: Handle duplicates document based on parameter options.
Parameter options : ( 'skip','overwrite','fail')
skip: Ignore the duplicates documents
overwrite: Update any existing documents with the same ID when adding documents.
fail: an error is raised if the document ID of the document being added already
exists.
:raises DuplicateDocumentError: Exception trigger on duplicate document
:return: None
"""
def docgen_func(function_code):
req_data = {"inputs": function_code}
output = query(req_data)
if type(output) is list:
return f'"""\n{output[0]["generated_text"]}\n"""'
else:
return str(output)
def pygen_func(nl_code_intent):
pass # TODO: generate code PL from intent NL + search in corpus
# inputs = {'code_nl': code_nl}
# payload = json.dumps(inputs)
# prediction = req.request(CT5_METHOD, CT5_URL, data=payload)
# prediction = req.request(CT5_METHOD, CT5_URL, json=req_data)
# answer = json.loads(prediction.content.decode("utf-8"))
# return str(answer)
# CT5_URL = "https://api-inference.huggingface.co/models/nielsr/codet5-small-code-summarization-ruby"
iface = gr.Interface(
# pygen_func,
docgen_func,
[
# gr.inputs.Textbox(lines=7, label="Code Intent (NL)", default=task_code),
gr.inputs.Textbox(lines=10, label="Enter Task + Code in Python (PL)", default=task_code),
],
# gr.outputs.Textbox(label="Code Generated PL"))
gr.outputs.Textbox(label="Docstring Generated (NL)"),
title='Generate a documentation string for Python code',
description='The application takes as input the python code for a function, or a class, and generates a documentation string, or code comment, for it using codeT5 fine tuned for code2text generation. Code to text generation, or code summarization, is a CodeXGLUE generation, or sequence to sequence, downstream task. CodeXGLUE stands for General Language Understanding Evaluation benchmark *for code*, which includes several datasets for diversified code intelligence downstream tasks.',
article=r"""CodeXGLLUE task definition (and dataset):
Code summarization (CodeSearchNet).
A model is given the task to generate natural language comments for a code.
For further details, see the [CodeXGLUE](https://github.com/microsoft/CodeXGLUE) benchmark dataset and open challenge for code intelligence.
""",
theme='grass',
# examples=[[dfs_code],['code 2']],
verbose=True,
show_tips=True
)
iface.launch(share=True)