File size: 1,018 Bytes
a87c588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class ProductionModel():

  def __init__(self, tokenizer, dict_labels):
    self.model = None
    self.tokenizer = tokenizer
    self.dict_labels = dict_labels

  def predict(self, X):

    '''
    Método que genera la predicción sobre nuevos datos (X). 
    X: Lista con los datos, cada elemento es una observación (list)
    '''

    if self.model is None:
      raise ValueError('Debes cargar el modelo con self.model = torch.load(model_file.pt)')

    X = self.tokenizer.tokenize(X)
    X = torch.tensor(X, device = device)

    self.model.eval()
    with torch.no_grad():
      predictions = self.model(X)[0]
      predictions = F.softmax(predictions, dim = 1)
      predictions = predictions.to('cpu').detach().numpy()

    output = [{self.dict_labels[i]: float(lista[i]) for i in range(len(lista))} for lista in predictions]

    if len(output) == 1:
      return output[0]

    return output