File size: 6,812 Bytes
4289090
 
 
 
b26b502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4289090
b26b502
4289090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import plotly.graph_objects as go
import networkx as nx

import networkx as nx
from bokeh.models import (BoxSelectTool, HoverTool, MultiLine, NodesAndLinkedEdges, 
                          Plot, Range1d, Scatter, TapTool, LabelSet, ColumnDataSource)
from bokeh.palettes import Spectral4
from bokeh.plotting import from_networkx

def create_bokeh_plot(entities, relationships):
    # Create a NetworkX graph
    G = nx.Graph()
    for entity_id, entity_data in entities.items():
        G.add_node(entity_id, label=f"{entity_data['value']} ({entity_data['type']})")
    for source, relation, target in relationships:
        G.add_edge(source, target, label=relation)

    plot = Plot(width=600, height=600,  # Increased size for better visibility
                x_range=Range1d(-1.2, 1.2), y_range=Range1d(-1.2, 1.2))
    plot.title.text = "Knowledge Graph Interaction"

    # Use tooltips to show node and edge labels on hover
    node_hover = HoverTool(tooltips=[("Entity", "@label")])
    edge_hover = HoverTool(tooltips=[("Relation", "@label")])
    plot.add_tools(node_hover, edge_hover, TapTool(), BoxSelectTool())

    graph_renderer = from_networkx(G, nx.spring_layout, scale=1,k=0.5, iterations=50, center=(0, 0))

    graph_renderer.node_renderer.glyph = Scatter(size=15, fill_color=Spectral4[0])
    graph_renderer.node_renderer.selection_glyph = Scatter(size=15, fill_color=Spectral4[2])
    graph_renderer.node_renderer.hover_glyph = Scatter(size=15, fill_color=Spectral4[1])

    graph_renderer.edge_renderer.glyph = MultiLine(line_color="#000", line_alpha=0.9, line_width=3)
    graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color=Spectral4[2], line_width=4)
    graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color=Spectral4[1], line_width=3)

    graph_renderer.selection_policy = NodesAndLinkedEdges()
    graph_renderer.inspection_policy = NodesAndLinkedEdges()

    plot.renderers.append(graph_renderer)

    # Add node labels
    x, y = zip(*graph_renderer.layout_provider.graph_layout.values())
    node_labels = nx.get_node_attributes(G, 'label')
    source = ColumnDataSource({'x': x, 'y': y, 'label': [node_labels[node] for node in G.nodes()]})
    labels = LabelSet(x='x', y='y', text='label', source=source, background_fill_color='white',
                      text_font_size='8pt', background_fill_alpha=0.7)
    plot.renderers.append(labels)

    # Add edge labels
    edge_x = []
    edge_y = []
    edge_labels = []
    for (start_node, end_node, label) in G.edges(data='label'):
        start_x, start_y = graph_renderer.layout_provider.graph_layout[start_node]
        end_x, end_y = graph_renderer.layout_provider.graph_layout[end_node]
        edge_x.append((start_x + end_x) / 2)
        edge_y.append((start_y + end_y) / 2)
        edge_labels.append(label)

    edge_label_source = ColumnDataSource({'x': edge_x, 'y': edge_y, 'label': edge_labels})
    edge_labels = LabelSet(x='x', y='y', text='label', source=edge_label_source,
                           background_fill_color='white', text_font_size='8pt',
                           background_fill_alpha=0.7)
    plot.renderers.append(edge_labels)

    return plot
    
# def create_bokeh_plot(entities, relationships):
#     # Create a NetworkX graph
#     G = nx.Graph()
#     for entity_id, entity_data in entities.items():
#         G.add_node(entity_id, **entity_data)
#     for source, relation, target in relationships:
#         G.add_edge(source, target)

#     # Create a Bokeh plot
#     plot = figure(title="Knowledge Graph", x_range=(-1.1,1.1), y_range=(-1.1,1.1),
#                   width=400, height=400, tools="pan,wheel_zoom,box_zoom,reset")

#     # Create graph renderer
#     graph_renderer = from_networkx(G, nx.spring_layout, scale=1, center=(0,0))

#     # Add graph renderer to plot
#     plot.renderers.append(graph_renderer)

#     return plot

def create_plotly_plot(entities, relationships):
    G = nx.DiGraph()  # Use DiGraph for directed edges

    for entity_id, entity_data in entities.items():
        G.add_node(entity_id, **entity_data)

    for source, relation, target in relationships:
        G.add_edge(source, target, relation=relation)

    pos = nx.spring_layout(G, k=0.5, iterations=50)  # Adjust layout parameters

    edge_trace = go.Scatter(
        x=[],
        y=[],
        line=dict(width=1, color="#888"),
        hoverinfo="text",
        mode="lines",
        text=[],
    )

    node_trace = go.Scatter(
        x=[],
        y=[],
        mode="markers+text",
        hoverinfo="text",
        marker=dict(
            showscale=True,
            colorscale="Viridis",
            reversescale=True,
            color=[],
            size=15,
            colorbar=dict(
                thickness=15,
                title="Node Connections",
                xanchor="left",
                titleside="right",
            ),
            line_width=2,
        ),
        text=[],
        textposition="top center",
    )

    edge_labels = []

    for edge in G.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_trace["x"] += (x0, x1, None)
        edge_trace["y"] += (y0, y1, None)
        
        # Calculate midpoint for edge label
        mid_x, mid_y = (x0 + x1) / 2, (y0 + y1) / 2
        edge_labels.append(
            go.Scatter(
                x=[mid_x],
                y=[mid_y],
                mode="text",
                text=[G.edges[edge]["relation"]],
                textposition="middle center",
                hoverinfo="none",
                showlegend=False,
                textfont=dict(size=8),
            )
        )

    for node in G.nodes():
        x, y = pos[node]
        node_trace["x"] += (x,)
        node_trace["y"] += (y,)
        node_info = f"{entities[node]['value']} ({entities[node]['type']})"
        node_trace["text"] += (node_info,)
        node_trace["marker"]["color"] += (len(list(G.neighbors(node))),)

    fig = go.Figure(
        data=[edge_trace, node_trace] + edge_labels,
        layout=go.Layout(
            title="Knowledge Graph",
            titlefont_size=16,
            showlegend=False,
            hovermode="closest",
            margin=dict(b=20, l=5, r=5, t=40),
            annotations=[],
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            width=800,
            height=600,
        ),
    )

    # Enable dragging of nodes
    fig.update_layout(
        newshape=dict(line_color="#009900"),
        # Enable zoom
        xaxis=dict(
            scaleanchor="y",
            scaleratio=1,
        ),
        yaxis=dict(
            scaleanchor="x",
            scaleratio=1,
        ),
    )

    return fig