Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
os.environ['CUDA_HOME'] = '/usr/local/cuda' | |
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin' | |
from datetime import datetime | |
import gradio as gr | |
import spaces | |
import numpy as np | |
import torch | |
from diffusers.image_processor import VaeImageProcessor | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
torch.jit.script = lambda f: f | |
from model.cloth_masker import AutoMasker, vis_mask | |
from model.pipeline import CatVTONPipeline | |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--base_model_path", | |
type=str, | |
default="booksforcharlie/stable-diffusion-inpainting", | |
help=( | |
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub." | |
), | |
) | |
parser.add_argument( | |
"--resume_path", | |
type=str, | |
default="zhengchong/CatVTON", | |
help=( | |
"The Path to the checkpoint of trained tryon model." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="resource/demo/output", | |
help="The output directory where the model predictions will be written.", | |
) | |
parser.add_argument( | |
"--width", | |
type=int, | |
default=768, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--height", | |
type=int, | |
default=1024, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--repaint", | |
action="store_true", | |
help="Whether to repaint the result image with the original background." | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
default=True, | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="bf16", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10 and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
return args | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
args = parse_args() | |
repo_path = snapshot_download(repo_id=args.resume_path) | |
# Pipeline | |
pipeline = CatVTONPipeline( | |
base_ckpt=args.base_model_path, | |
attn_ckpt=repo_path, | |
attn_ckpt_version="mix", | |
weight_dtype=init_weight_dtype(args.mixed_precision), | |
use_tf32=args.allow_tf32, | |
device='cuda' | |
) | |
# AutoMasker | |
mask_processor = VaeImageProcessor( | |
vae_scale_factor=8, | |
do_normalize=False, | |
do_binarize=True, | |
do_convert_grayscale=True | |
) | |
automasker = AutoMasker( | |
densepose_ckpt=os.path.join(repo_path, "DensePose"), | |
schp_ckpt=os.path.join(repo_path, "SCHP"), | |
device='cuda', | |
) | |
def submit_function( | |
person_image, | |
cloth_image, | |
cloth_type, | |
num_inference_steps, | |
guidance_scale, | |
seed, | |
show_type | |
): | |
# person_image ๊ฐ์ฒด์์ background์ layers[0]์ ๋ถ๋ฆฌ | |
person_image, mask = person_image["background"], person_image["layers"][0] | |
mask = Image.open(mask).convert("L") | |
# ๋ง์ฝ ๋ง์คํฌ๊ฐ ์ ๋ถ 0(๊ฒ์ )์ด๋ฉด None ์ฒ๋ฆฌ | |
if len(np.unique(np.array(mask))) == 1: | |
mask = None | |
else: | |
mask = np.array(mask) | |
mask[mask > 0] = 255 | |
mask = Image.fromarray(mask) | |
tmp_folder = args.output_dir | |
date_str = datetime.now().strftime("%Y%m%d%H%M%S") | |
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png") | |
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])): | |
os.makedirs(os.path.join(tmp_folder, date_str[:8])) | |
generator = None | |
if seed != -1: | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
person_image = Image.open(person_image).convert("RGB") | |
cloth_image = Image.open(cloth_image).convert("RGB") | |
person_image = resize_and_crop(person_image, (args.width, args.height)) | |
cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) | |
# If user didn't draw a mask | |
if mask is not None: | |
mask = resize_and_crop(mask, (args.width, args.height)) | |
else: | |
mask = automasker( | |
person_image, | |
cloth_type | |
)['mask'] | |
mask = mask_processor.blur(mask, blur_factor=9) | |
# Inference | |
result_image = pipeline( | |
image=person_image, | |
condition_image=cloth_image, | |
mask=mask, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
)[0] | |
# Post-process & Save | |
masked_person = vis_mask(person_image, mask) | |
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4) | |
save_result_image.save(result_save_path) | |
if show_type == "result only": | |
return result_image | |
else: | |
width, height = person_image.size | |
if show_type == "input & result": | |
condition_width = width // 2 | |
conditions = image_grid([person_image, cloth_image], 2, 1) | |
else: | |
condition_width = width // 3 | |
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1) | |
conditions = conditions.resize((condition_width, height), Image.NEAREST) | |
new_result_image = Image.new("RGB", (width + condition_width + 5, height)) | |
new_result_image.paste(conditions, (0, 0)) | |
new_result_image.paste(result_image, (condition_width + 5, 0)) | |
return new_result_image | |
def person_example_fn(image_path): | |
return image_path | |
# Custom CSS | |
css = """ | |
footer {visibility: hidden} | |
/* Main container styling */ | |
.gradio-container { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
border-radius: 20px; | |
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15); | |
} | |
/* Header styling */ | |
h1, h2, h3 { | |
color: #2c3e50; | |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
text-shadow: 1px 1px 2px rgba(0,0,0,0.1); | |
} | |
/* Button styling */ | |
button.primary-button { | |
background: linear-gradient(45deg, #4CAF50, #45a049); | |
border: none; | |
border-radius: 10px; | |
color: white; | |
padding: 12px 24px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3); | |
} | |
button.primary-button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.4); | |
} | |
/* Image container styling */ | |
.image-container { | |
border-radius: 15px; | |
overflow: hidden; | |
box-shadow: 0 4px 15px rgba(0,0,0,0.1); | |
transition: transform 0.3s ease; | |
} | |
.image-container:hover { | |
transform: scale(1.02); | |
} | |
/* Radio button styling */ | |
.radio-group label { | |
background-color: #ffffff; | |
border-radius: 8px; | |
padding: 10px 15px; | |
margin: 5px; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
} | |
.radio-group input:checked + label { | |
background-color: #4CAF50; | |
color: white; | |
} | |
/* Slider styling */ | |
.slider-container { | |
background: white; | |
padding: 15px; | |
border-radius: 10px; | |
box-shadow: 0 2px 10px rgba(0,0,0,0.05); | |
} | |
.slider { | |
height: 8px; | |
border-radius: 4px; | |
background: #e0e0e0; | |
} | |
.slider .thumb { | |
width: 20px; | |
height: 20px; | |
background: #4CAF50; | |
border-radius: 50%; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.2); | |
} | |
/* Alert/warning text styling */ | |
.warning-text { | |
color: #ff5252; | |
font-weight: bold; | |
text-align: center; | |
padding: 10px; | |
background: rgba(255,82,82,0.1); | |
border-radius: 8px; | |
margin: 10px 0; | |
} | |
/* Example gallery styling */ | |
.example-gallery { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); | |
gap: 15px; | |
padding: 15px; | |
background: white; | |
border-radius: 10px; | |
box-shadow: 0 2px 10px rgba(0,0,0,0.05); | |
} | |
.example-item { | |
border-radius: 8px; | |
overflow: hidden; | |
transition: transform 0.3s ease; | |
} | |
.example-item:hover { | |
transform: scale(1.05); | |
} | |
""" | |
def app_gradio(): | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="blue"), css=css) as demo: | |
gr.Markdown( | |
""" | |
# ๐ Fashion Fit | |
Transform your look with AI-powered virtual clothing try-on! | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=350): | |
with gr.Group(): | |
gr.Markdown("### ๐ธ Upload Images") | |
with gr.Row(): | |
image_path = gr.Image( | |
type="filepath", | |
interactive=True, | |
visible=False, | |
) | |
person_image = gr.ImageEditor( | |
interactive=True, | |
label="Person Image", | |
type="filepath", | |
elem_classes="image-container" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=230): | |
cloth_image = gr.Image( | |
interactive=True, | |
label="Clothing Item", | |
type="filepath", | |
elem_classes="image-container" | |
) | |
with gr.Column(scale=1, min_width=120): | |
cloth_type = gr.Radio( | |
label="Clothing Type", | |
choices=["upper", "lower", "overall"], | |
value="upper", | |
elem_classes="radio-group" | |
) | |
submit = gr.Button("๐ Generate Try-On", elem_classes="primary-button") | |
with gr.Accordion("โ๏ธ Advanced Settings", open=False): | |
num_inference_steps = gr.Slider( | |
label="Quality Level", | |
minimum=10, | |
maximum=100, | |
step=5, | |
value=50, | |
elem_classes="slider-container" | |
) | |
guidance_scale = gr.Slider( | |
label="Style Strength", | |
minimum=0.0, | |
maximum=7.5, | |
step=0.5, | |
value=2.5, | |
elem_classes="slider-container" | |
) | |
seed = gr.Slider( | |
label="Random Seed", | |
minimum=-1, | |
maximum=10000, | |
step=1, | |
value=42, | |
elem_classes="slider-container" | |
) | |
show_type = gr.Radio( | |
label="Display Mode", | |
choices=["result only", "input & result", "input & mask & result"], | |
value="input & mask & result", | |
elem_classes="radio-group" | |
) | |
with gr.Column(scale=2, min_width=500): | |
result_image = gr.Image( | |
interactive=False, | |
label="Final Result", | |
elem_classes="image-container" | |
) | |
with gr.Row(): | |
root_path = "resource/demo/example" | |
with gr.Column(): | |
gr.Markdown("#### ๐ค Model Examples") | |
# elem_classes ์ธ์๋ฅผ ์ ๊ฑฐํด์ผ ์ค๋ฅ๊ฐ ์ฌ๋ผ์ง๋๋ค. | |
men_exm = gr.Examples( | |
examples=[ | |
os.path.join(root_path, "person", "men", file) | |
for file in os.listdir(os.path.join(root_path, "person", "men")) | |
], | |
examples_per_page=4, | |
inputs=image_path, | |
label="Men's Examples" | |
) | |
women_exm = gr.Examples( | |
examples=[ | |
os.path.join(root_path, "person", "women", file) | |
for file in os.listdir(os.path.join(root_path, "person", "women")) | |
], | |
examples_per_page=4, | |
inputs=image_path, | |
label="Women's Examples" | |
) | |
gr.Markdown( | |
'<div class="info-text">Model examples courtesy of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a></div>' | |
) | |
with gr.Column(): | |
gr.Markdown("#### ๐ Clothing Examples") | |
condition_upper_exm = gr.Examples( | |
examples=[ | |
os.path.join(root_path, "condition", "upper", file) | |
for file in os.listdir(os.path.join(root_path, "condition", "upper")) | |
], | |
examples_per_page=4, | |
inputs=cloth_image, | |
label="Upper Garments" | |
) | |
condition_overall_exm = gr.Examples( | |
examples=[ | |
os.path.join(root_path, "condition", "overall", file) | |
for file in os.listdir(os.path.join(root_path, "condition", "overall")) | |
], | |
examples_per_page=4, | |
inputs=cloth_image, | |
label="Full Outfits" | |
) | |
condition_person_exm = gr.Examples( | |
examples=[ | |
os.path.join(root_path, "condition", "person", file) | |
for file in os.listdir(os.path.join(root_path, "condition", "person")) | |
], | |
examples_per_page=4, | |
inputs=cloth_image, | |
label="Reference Styles" | |
) | |
gr.Markdown( | |
'<div class="info-text">Clothing examples sourced from various online retailers</div>' | |
) | |
image_path.change( | |
person_example_fn, | |
inputs=image_path, | |
outputs=person_image | |
) | |
submit.click( | |
submit_function, | |
[ | |
person_image, | |
cloth_image, | |
cloth_type, | |
num_inference_steps, | |
guidance_scale, | |
seed, | |
show_type, | |
], | |
result_image, | |
) | |
demo.queue().launch(share=True, show_error=True) | |
if __name__ == "__main__": | |
app_gradio() | |