File size: 21,567 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Some parts of this file are refer to Hugging Face Diffusers library.
import os
import json
import warnings
from typing import Callable, List, Optional, Union, Dict, Any
import PIL.Image
import trimesh
import rembg
import torch
import numpy as np
from huggingface_hub import hf_hub_download

from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.loaders import (
    FluxIPAdapterMixin,
    FluxLoraLoaderMixin,
    FromSingleFileMixin,
    TextualInversionLoaderMixin,
)
from .pipeline_utils import (
    TransformerDiffusionMixin,
    preprocess_image,
    retrieve_timesteps,
    remove_floater,
    remove_degenerate_face,
    reduce_face,
    smart_load_model,
)
from transformers import (
    BitImageProcessor,
)

import step1x3d_geometry
from step1x3d_geometry.models.autoencoders.surface_extractors import MeshExtractResult
from step1x3d_geometry.utils.config import ExperimentConfig, load_config
from ..autoencoders.michelangelo_autoencoder import MichelangeloAutoencoder
from ..conditional_encoders.dinov2_encoder import Dinov2Encoder
from ..conditional_encoders.t5_encoder import T5Encoder
from ..conditional_encoders.label_encoder import LabelEncoder
from ..transformers.flux_transformer_1d import FluxDenoiser


class Step1X3DGeometryPipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `torch.Tensor`):
            List of PIL images or a tensor representing the input images.
        meshes (`List[trimesh.Trimesh]` or `np.ndarray`)
            List of denoised trimesh meshes of length `batch_size` or a tuple of NumPy array with shape `((vertices, 3), (faces, 3)) of length `batch_size``.
    """

    image: PIL.Image.Image
    mesh: Union[trimesh.Trimesh, MeshExtractResult, np.ndarray]


class Step1X3DGeometryPipeline(
    DiffusionPipeline, FromSingleFileMixin, TransformerDiffusionMixin
):
    """
    Step1X-3D Geometry Pipeline, generate high-quality meshes conditioned on image/caption/label inputs

    Args:
        scheduler (FlowMatchEulerDiscreteScheduler):
            The diffusion scheduler controlling the denoising process
        vae (MichelangeloAutoencoder):
            Variational Autoencoder for latent space compression/reconstruction
        transformer (FluxDenoiser):
            Transformer-based denoising model
        visual_encoder (Dinov2Encoder):
            Pretrained visual encoder for image feature extraction
        caption_encoder (T5Encoder):
            Text encoder for processing natural language captions
        label_encoder (LabelEncoder):
            Auxiliary text encoder for label conditioning
        visual_eature_extractor (BitImageProcessor):
            Preprocessor for input images

    Note:
        - CPU offloading sequence: visual_encoder β†’ caption_encoder β†’ label_encoder β†’ transformer β†’ vae
        - Optional components: visual_encoder, visual_eature_extractor, caption_encoder, label_encoder
    """

    model_cpu_offload_seq = (
        "visual_encoder->caption_encoder->label_encoder->transformer->vae"
    )
    _optional_components = [
        "visual_encoder",
        "visual_eature_extractor",
        "caption_encoder",
        "label_encoder",
    ]

    @classmethod
    def from_pretrained(cls, model_path, subfolder='.', **kwargs):
        local_model_path = smart_load_model(model_path, subfolder)
        return super().from_pretrained(local_model_path, **kwargs)

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: MichelangeloAutoencoder,
        transformer: FluxDenoiser,
        visual_encoder: Dinov2Encoder,
        caption_encoder: T5Encoder,
        label_encoder: LabelEncoder,
        visual_eature_extractor: BitImageProcessor,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            transformer=transformer,
            scheduler=scheduler,
            visual_encoder=visual_encoder,
            caption_encoder=caption_encoder,
            label_encoder=label_encoder,
            visual_eature_extractor=visual_eature_extractor,
        )

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def check_inputs(
        self,
        image,
    ):
        r"""
        Check if the inputs are valid. Raise an error if not.
        """
        if isinstance(image, str):
            assert os.path.isfile(image) or image.startswith(
                "http"
            ), "Input image must be a valid URL or a file path."
        elif isinstance(image, (torch.Tensor, PIL.Image.Image)):
            raise ValueError(
                "Input image must be a `torch.Tensor` or `PIL.Image.Image`."
            )

    def encode_image(self, image, device, num_meshes_per_prompt):
        dtype = next(self.visual_encoder.parameters()).dtype

        image_embeds = self.visual_encoder.encode_image(image)
        image_embeds = image_embeds.repeat_interleave(num_meshes_per_prompt, dim=0)

        uncond_image_embeds = self.visual_encoder.empty_image_embeds.repeat(
            image_embeds.shape[0], 1, 1
        ).to(image_embeds)

        return image_embeds, uncond_image_embeds

    def encode_caption(self, caption, device, num_meshes_per_prompt):
        dtype = next(self.label_encoder.parameters()).dtype

        caption_embeds = self.caption_encoder.encode_text([caption])
        caption_embeds = caption_embeds.repeat_interleave(num_meshes_per_prompt, dim=0)

        uncond_caption_embeds = self.caption_encoder.empty_text_embeds.repeat(
            caption_embeds.shape[0], 1, 1
        ).to(caption_embeds)

        return caption_embeds, uncond_caption_embeds

    def encode_label(self, label, device, num_meshes_per_prompt):
        dtype = next(self.label_encoder.parameters()).dtype

        label_embeds = self.label_encoder.encode_label([label])
        label_embeds = label_embeds.repeat_interleave(num_meshes_per_prompt, dim=0)

        uncond_label_embeds = self.label_encoder.empty_label_embeds.repeat(
            label_embeds.shape[0], 1, 1
        ).to(label_embeds)

        return label_embeds, uncond_label_embeds

    def prepare_latents(
        self,
        batch_size,
        num_tokens,
        num_channels_latents,
        dtype,
        device,
        generator,
        latents: Optional[torch.Tensor] = None,
    ):
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        shape = (batch_size, num_tokens, num_channels_latents)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        return latents

    @torch.no_grad()
    def __call__(
        self,
        image: Union[torch.FloatTensor, PIL.Image.Image, str],
        label: Optional[str] = None,
        caption: Optional[str] = None,
        num_inference_steps: int = 30,
        timesteps: List[int] = None,
        num_meshes_per_prompt: int = 1,
        guidance_scale: float = 7.5,
        generator: Optional[int] = None,
        latents: Optional[torch.FloatTensor] = None,
        force_remove_background: bool = False,
        background_color: List[int] = [255, 255, 255],
        foreground_ratio: float = 0.95,
        surface_extractor_type: Optional[str] = None,
        bounds: float = 1.05,
        mc_level: float = 0.0,
        octree_resolution: int = 384,
        output_type: str = "trimesh",
        do_remove_floater: bool = True,
        do_remove_degenerate_face: bool = False,
        do_reduce_face: bool = True,
        do_shade_smooth: bool = True,
        max_facenum: int = 200000,
        return_dict: bool = True,
        use_zero_init: Optional[bool] = True,
        zero_steps: Optional[int] = 0,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            image (`torch.FloatTensor` or `PIL.Image.Image` or `str`):
                `Image`, or tensor representing an image batch, or path to an image file. The image will be encoded to
                its CLIP/DINO-v2 embedding which the DiT will be conditioned on.
            label (`str`):
                The label of the generated mesh, like {"symmetry": "asymmetry", "edge_type": "smooth"}
            num_inference_steps (`int`, *optional*, defaults to 30):
                The number of denoising steps. More denoising steps usually lead to a higher quality mesh at the expense
                of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process. If not provided, will use equally spaced timesteps.
            num_meshes_per_prompt (`int`, *optional*, defaults to 1):
                The number of meshes to generate per input image.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                Higher guidance scale encourages generation that closely matches the input image.
            generator (`int`, *optional*):
                A seed to make the generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents to use as inputs for mesh generation.
            force_remove_background (`bool`, *optional*, defaults to `False`):
                Whether to force remove the background from the input image before processing.
            background_color (`List[int]`, *optional*, defaults to `[255, 255, 255]`):
                RGB color values for the background if it needs to be removed or modified.
            foreground_ratio (`float`, *optional*, defaults to 0.95):
                Ratio of the image to consider as foreground when processing.
            surface_extractor_type (`str`, *optional*, defaults to "mc"):
                Type of surface extraction method to use ("mc" for Marching Cubes or other available methods).
            bounds (`float`, *optional*, defaults to 1.05):
                Bounding box size for the generated mesh.
            mc_level (`float`, *optional*, defaults to 0.0):
                Iso-surface level value for Marching Cubes extraction.
            octree_resolution (`int`, *optional*, defaults to 256):
                Resolution of the octree used for mesh generation.
            output_type (`str`, *optional*, defaults to "trimesh"):
                Type of output mesh format ("trimesh" or other supported formats).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a `MeshPipelineOutput` instead of a plain tuple.

        Returns:
            [`MeshPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`MeshPipelineOutput`] is returned, otherwise a `tuple` is returned where the
                first element is a list of generated meshes and the second element is a list of corresponding metadata.
        """
        # 0. Check inputs. Raise error if not correct
        self.check_inputs(
            image=image,
        )
        device = self._execution_device
        self._guidance_scale = guidance_scale

        # 1. Define call parameters
        if isinstance(image, torch.Tensor):
            batch_size = image.shape[0]
        elif isinstance(image, PIL.Image.Image) or isinstance(image, str):
            batch_size = 1

        # 2. Preprocess input image
        if isinstance(image, torch.Tensor):
            assert image.ndim == 3  # H, W, 3
            image_pil = TF.to_pil_image(image)
        elif isinstance(image, PIL.Image.Image):
            image_pil = image
        elif isinstance(image, str):
            if image.startswith("http"):
                import requests

                image_pil = PIL.Image.open(requests.get(image, stream=True).raw)
            else:
                image_pil = PIL.Image.open(image)
        image_pil = preprocess_image(image_pil, force=force_remove_background, background_color=background_color, foreground_ratio=foreground_ratio)  # remove the background images

        # 3. Encode condition
        image_embeds, negative_image_embeds = self.encode_image(
            image_pil, device, num_meshes_per_prompt
        )
        if self.do_classifier_free_guidance and image_embeds is not None:
            image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
        # 3.1 Encode label condition
        label_embeds = None
        if self.transformer.cfg.use_label_condition:
            if label is not None:
                label_embeds, negative_label_embeds = self.encode_label(
                    label, device, num_meshes_per_prompt
                )
                if self.do_classifier_free_guidance:
                    label_embeds = torch.cat(
                        [negative_label_embeds, label_embeds], dim=0
                    )
            else:
                uncond_label_embeds = self.label_encoder.empty_label_embeds.repeat(
                    num_meshes_per_prompt, 1, 1
                ).to(image_embeds)
                if self.do_classifier_free_guidance:
                    label_embeds = torch.cat(
                        [uncond_label_embeds, uncond_label_embeds], dim=0
                    )
        # 3.3 Encode caption condition
        caption_embeds = None
        if self.transformer.cfg.use_caption_condition:
            if caption is not None:
                caption_embeds, negative_caption_embeds = self.encode_caption(
                    caption, device, num_meshes_per_prompt
                )
                if self.do_classifier_free_guidance:
                    caption_embeds = torch.cat(
                        [negative_caption_embeds, caption_embeds], dim=0
                    )
            else:
                uncond_caption_embeds = self.caption_encoder.empty_text_embeds.repeat(
                    num_meshes_per_prompt, 1, 1
                ).to(image_embeds)
                if self.do_classifier_free_guidance:
                    caption_embeds = torch.cat(
                        [uncond_caption_embeds, uncond_caption_embeds], dim=0
                    )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps
        )
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        num_latents = self.vae.cfg.num_latents
        num_channels_latents = self.transformer.cfg.input_channels
        latents = self.prepare_latents(
            batch_size * num_meshes_per_prompt,
            num_latents,
            num_channels_latents,
            image_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = (
                    torch.cat([latents] * 2)
                    if self.do_classifier_free_guidance
                    else latents
                )
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0])

                noise_pred = self.transformer(
                    latent_model_input,
                    timestep,
                    visual_condition=image_embeds,
                    label_condition=label_embeds,
                    caption_condition=caption_embeds,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_image = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (
                        noise_pred_image - noise_pred_uncond
                    )

                if (i <= zero_steps) and use_zero_init:
                    noise_pred = noise_pred * 0.0

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(
                    noise_pred, t, latents, return_dict=False
                )[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()

        # 4. Post-processing
        if not output_type == "latent":
            if latents.dtype == torch.bfloat16:
                self.vae.to(torch.float16)
                latents = latents.to(torch.float16)
            mesh = self.vae.extract_geometry(
                self.vae.decode(latents),
                surface_extractor_type=surface_extractor_type,
                bounds=bounds,
                mc_level=mc_level,
                octree_resolution=octree_resolution,
                enable_pbar=False,
            )
            if output_type != "raw":
                mesh_list = []
                for i, cur_mesh in enumerate(mesh):
                    print(f"Generating mesh {i+1}/{num_meshes_per_prompt}")
                    if output_type == "trimesh":
                        import trimesh

                        cur_mesh = trimesh.Trimesh(
                            vertices=cur_mesh.verts.cpu().numpy(),
                            faces=cur_mesh.faces.cpu().numpy(),
                        )
                        cur_mesh.fix_normals()
                        cur_mesh.face_normals
                        cur_mesh.vertex_normals
                        cur_mesh.visual = trimesh.visual.TextureVisuals(
                            material=trimesh.visual.material.PBRMaterial(
                                baseColorFactor=(255, 255, 255),
                                main_color=(255, 255, 255),
                                metallicFactor=0.05,
                                roughnessFactor=1.0,
                            )
                        )
                        if do_remove_floater:
                            cur_mesh = remove_floater(cur_mesh)
                        if do_remove_degenerate_face:
                            cur_mesh = remove_degenerate_face(cur_mesh)
                        if do_reduce_face and max_facenum > 0:
                            cur_mesh = reduce_face(cur_mesh, max_facenum)
                        if do_shade_smooth:
                            cur_mesh = cur_mesh.smooth_shaded
                        mesh_list.append(cur_mesh)
                    elif output_type == "np":
                        if do_remove_floater:
                            print(
                                'remove floater is NOT used when output_type is "np". '
                            )
                        if do_remove_degenerate_face:
                            print(
                                'remove degenerate face is NOT used when output_type is "np". '
                            )
                        if do_reduce_face:
                            print(
                                'reduce floater is NOT used when output_type is "np". '
                            )
                        if do_shade_smooth:
                            print('shade smooth is NOT used when output_type is "np". ')
                        mesh_list.append(
                            [
                                cur_mesh[0].verts.cpu().numpy(),
                                cur_mesh[0].faces.cpu().numpy(),
                            ]
                        )
                mesh = mesh_list
            else:
                if do_remove_floater:
                    print('remove floater is NOT used when output_type is "raw". ')
                if do_remove_degenerate_face:
                    print(
                        'remove degenerate face is NOT used when output_type is "raw". '
                    )
                if do_reduce_face:
                    print('reduce floater is NOT used when output_type is "raw". ')

        else:
            mesh = latents

        if not return_dict:
            return tuple(image_pil), tuple(mesh)
        return Step1X3DGeometryPipelineOutput(image=image_pil, mesh=mesh)