Spaces:
Runtime error
Runtime error
| # adopted from https://github.com/jik876/hifi-gan/blob/master/models.py | |
| import torch | |
| from torch import nn | |
| from torch.nn import Conv1d, ConvTranspose1d | |
| from torch.nn import functional as F | |
| from torch.nn.utils.parametrizations import weight_norm | |
| from torch.nn.utils.parametrize import remove_parametrizations | |
| from TTS.utils.io import load_fsspec | |
| LRELU_SLOPE = 0.1 | |
| def get_padding(k, d): | |
| return int((k * d - d) / 2) | |
| class ResBlock1(torch.nn.Module): | |
| """Residual Block Type 1. It has 3 convolutional layers in each convolutional block. | |
| Network:: | |
| x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o | |
| |--------------------------------------------------------------------------------------------------| | |
| Args: | |
| channels (int): number of hidden channels for the convolutional layers. | |
| kernel_size (int): size of the convolution filter in each layer. | |
| dilations (list): list of dilation value for each conv layer in a block. | |
| """ | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super().__init__() | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) | |
| ), | |
| weight_norm( | |
| Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) | |
| ), | |
| weight_norm( | |
| Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) | |
| ), | |
| ] | |
| ) | |
| def forward(self, x): | |
| """ | |
| Args: | |
| x (Tensor): input tensor. | |
| Returns: | |
| Tensor: output tensor. | |
| Shapes: | |
| x: [B, C, T] | |
| """ | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, LRELU_SLOPE) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_parametrizations(l, "weight") | |
| for l in self.convs2: | |
| remove_parametrizations(l, "weight") | |
| class ResBlock2(torch.nn.Module): | |
| """Residual Block Type 2. It has 1 convolutional layers in each convolutional block. | |
| Network:: | |
| x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o | |
| |---------------------------------------------------| | |
| Args: | |
| channels (int): number of hidden channels for the convolutional layers. | |
| kernel_size (int): size of the convolution filter in each layer. | |
| dilations (list): list of dilation value for each conv layer in a block. | |
| """ | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3)): | |
| super().__init__() | |
| self.convs = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| def forward(self, x): | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs: | |
| remove_parametrizations(l, "weight") | |
| class HifiganGenerator(torch.nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| resblock_type, | |
| resblock_dilation_sizes, | |
| resblock_kernel_sizes, | |
| upsample_kernel_sizes, | |
| upsample_initial_channel, | |
| upsample_factors, | |
| inference_padding=5, | |
| cond_channels=0, | |
| conv_pre_weight_norm=True, | |
| conv_post_weight_norm=True, | |
| conv_post_bias=True, | |
| ): | |
| r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) | |
| Network: | |
| x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o | |
| .. -> zI ---| | |
| resblockN_kNx1 -> zN ---' | |
| Args: | |
| in_channels (int): number of input tensor channels. | |
| out_channels (int): number of output tensor channels. | |
| resblock_type (str): type of the `ResBlock`. '1' or '2'. | |
| resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. | |
| resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. | |
| upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. | |
| upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 | |
| for each consecutive upsampling layer. | |
| upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. | |
| inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. | |
| """ | |
| super().__init__() | |
| self.inference_padding = inference_padding | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_factors) | |
| # initial upsampling layers | |
| self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) | |
| resblock = ResBlock1 if resblock_type == "1" else ResBlock2 | |
| # upsampling layers | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| upsample_initial_channel // (2**i), | |
| upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| # MRF blocks | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
| self.resblocks.append(resblock(ch, k, d)) | |
| # post convolution layer | |
| self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) | |
| if cond_channels > 0: | |
| self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) | |
| if not conv_pre_weight_norm: | |
| remove_parametrizations(self.conv_pre, "weight") | |
| if not conv_post_weight_norm: | |
| remove_parametrizations(self.conv_post, "weight") | |
| def forward(self, x, g=None): | |
| """ | |
| Args: | |
| x (Tensor): feature input tensor. | |
| g (Tensor): global conditioning input tensor. | |
| Returns: | |
| Tensor: output waveform. | |
| Shapes: | |
| x: [B, C, T] | |
| Tensor: [B, 1, T] | |
| """ | |
| o = self.conv_pre(x) | |
| if hasattr(self, "cond_layer"): | |
| o = o + self.cond_layer(g) | |
| for i in range(self.num_upsamples): | |
| o = F.leaky_relu(o, LRELU_SLOPE) | |
| o = self.ups[i](o) | |
| z_sum = None | |
| for j in range(self.num_kernels): | |
| if z_sum is None: | |
| z_sum = self.resblocks[i * self.num_kernels + j](o) | |
| else: | |
| z_sum += self.resblocks[i * self.num_kernels + j](o) | |
| o = z_sum / self.num_kernels | |
| o = F.leaky_relu(o) | |
| o = self.conv_post(o) | |
| o = torch.tanh(o) | |
| return o | |
| def inference(self, c): | |
| """ | |
| Args: | |
| x (Tensor): conditioning input tensor. | |
| Returns: | |
| Tensor: output waveform. | |
| Shapes: | |
| x: [B, C, T] | |
| Tensor: [B, 1, T] | |
| """ | |
| c = c.to(self.conv_pre.weight.device) | |
| c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") | |
| return self.forward(c) | |
| def remove_weight_norm(self): | |
| print("Removing weight norm...") | |
| for l in self.ups: | |
| remove_parametrizations(l, "weight") | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_parametrizations(self.conv_pre, "weight") | |
| remove_parametrizations(self.conv_post, "weight") | |
| def load_checkpoint( | |
| self, config, checkpoint_path, eval=False, cache=False | |
| ): # pylint: disable=unused-argument, redefined-builtin | |
| state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
| self.load_state_dict(state["model"]) | |
| if eval: | |
| self.eval() | |
| assert not self.training | |
| self.remove_weight_norm() | |