Spaces:
Runtime error
Runtime error
| import os | |
| from typing import Any, Dict, List | |
| import fsspec | |
| import numpy as np | |
| import torch | |
| from coqpit import Coqpit | |
| from TTS.config import check_config_and_model_args | |
| from TTS.tts.utils.managers import BaseIDManager | |
| class LanguageManager(BaseIDManager): | |
| """Manage the languages for multi-lingual πΈTTS models. Load a datafile and parse the information | |
| in a way that can be queried by language. | |
| Args: | |
| language_ids_file_path (str, optional): Path to the metafile that maps language names to ids used by | |
| TTS models. Defaults to "". | |
| config (Coqpit, optional): Coqpit config that contains the language information in the datasets filed. | |
| Defaults to None. | |
| Examples: | |
| >>> manager = LanguageManager(language_ids_file_path=language_ids_file_path) | |
| >>> language_id_mapper = manager.language_ids | |
| """ | |
| def __init__( | |
| self, | |
| language_ids_file_path: str = "", | |
| config: Coqpit = None, | |
| ): | |
| super().__init__(id_file_path=language_ids_file_path) | |
| if config: | |
| self.set_language_ids_from_config(config) | |
| def num_languages(self) -> int: | |
| return len(list(self.name_to_id.keys())) | |
| def language_names(self) -> List: | |
| return list(self.name_to_id.keys()) | |
| def parse_language_ids_from_config(c: Coqpit) -> Dict: | |
| """Set language id from config. | |
| Args: | |
| c (Coqpit): Config | |
| Returns: | |
| Tuple[Dict, int]: Language ID mapping and the number of languages. | |
| """ | |
| languages = set({}) | |
| for dataset in c.datasets: | |
| if "language" in dataset: | |
| languages.add(dataset["language"]) | |
| else: | |
| raise ValueError(f"Dataset {dataset['name']} has no language specified.") | |
| return {name: i for i, name in enumerate(sorted(list(languages)))} | |
| def set_language_ids_from_config(self, c: Coqpit) -> None: | |
| """Set language IDs from config samples. | |
| Args: | |
| c (Coqpit): Config. | |
| """ | |
| self.name_to_id = self.parse_language_ids_from_config(c) | |
| def parse_ids_from_data(items: List, parse_key: str) -> Any: | |
| raise NotImplementedError | |
| def set_ids_from_data(self, items: List, parse_key: str) -> Any: | |
| raise NotImplementedError | |
| def save_ids_to_file(self, file_path: str) -> None: | |
| """Save language IDs to a json file. | |
| Args: | |
| file_path (str): Path to the output file. | |
| """ | |
| self._save_json(file_path, self.name_to_id) | |
| def init_from_config(config: Coqpit) -> "LanguageManager": | |
| """Initialize the language manager from a Coqpit config. | |
| Args: | |
| config (Coqpit): Coqpit config. | |
| """ | |
| language_manager = None | |
| if check_config_and_model_args(config, "use_language_embedding", True): | |
| if config.get("language_ids_file", None): | |
| language_manager = LanguageManager(language_ids_file_path=config.language_ids_file) | |
| language_manager = LanguageManager(config=config) | |
| return language_manager | |
| def _set_file_path(path): | |
| """Find the language_ids.json under the given path or the above it. | |
| Intended to band aid the different paths returned in restored and continued training.""" | |
| path_restore = os.path.join(os.path.dirname(path), "language_ids.json") | |
| path_continue = os.path.join(path, "language_ids.json") | |
| fs = fsspec.get_mapper(path).fs | |
| if fs.exists(path_restore): | |
| return path_restore | |
| if fs.exists(path_continue): | |
| return path_continue | |
| return None | |
| def get_language_balancer_weights(items: list): | |
| language_names = np.array([item["language"] for item in items]) | |
| unique_language_names = np.unique(language_names).tolist() | |
| language_ids = [unique_language_names.index(l) for l in language_names] | |
| language_count = np.array([len(np.where(language_names == l)[0]) for l in unique_language_names]) | |
| weight_language = 1.0 / language_count | |
| # get weight for each sample | |
| dataset_samples_weight = np.array([weight_language[l] for l in language_ids]) | |
| # normalize | |
| dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) | |
| return torch.from_numpy(dataset_samples_weight).float() | |