Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn.functional as F | |
| class KernelPredictor(torch.nn.Module): | |
| """Kernel predictor for the location-variable convolutions""" | |
| def __init__( # pylint: disable=dangerous-default-value | |
| self, | |
| cond_channels, | |
| conv_in_channels, | |
| conv_out_channels, | |
| conv_layers, | |
| conv_kernel_size=3, | |
| kpnet_hidden_channels=64, | |
| kpnet_conv_size=3, | |
| kpnet_dropout=0.0, | |
| kpnet_nonlinear_activation="LeakyReLU", | |
| kpnet_nonlinear_activation_params={"negative_slope": 0.1}, | |
| ): | |
| """ | |
| Args: | |
| cond_channels (int): number of channel for the conditioning sequence, | |
| conv_in_channels (int): number of channel for the input sequence, | |
| conv_out_channels (int): number of channel for the output sequence, | |
| conv_layers (int): | |
| kpnet_ | |
| """ | |
| super().__init__() | |
| self.conv_in_channels = conv_in_channels | |
| self.conv_out_channels = conv_out_channels | |
| self.conv_kernel_size = conv_kernel_size | |
| self.conv_layers = conv_layers | |
| l_w = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers | |
| l_b = conv_out_channels * conv_layers | |
| padding = (kpnet_conv_size - 1) // 2 | |
| self.input_conv = torch.nn.Sequential( | |
| torch.nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=(5 - 1) // 2, bias=True), | |
| getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
| ) | |
| self.residual_conv = torch.nn.Sequential( | |
| torch.nn.Dropout(kpnet_dropout), | |
| torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), | |
| getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
| torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), | |
| getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
| torch.nn.Dropout(kpnet_dropout), | |
| torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), | |
| getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
| torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), | |
| getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
| torch.nn.Dropout(kpnet_dropout), | |
| torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), | |
| getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
| torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True), | |
| getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), | |
| ) | |
| self.kernel_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_w, kpnet_conv_size, padding=padding, bias=True) | |
| self.bias_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_b, kpnet_conv_size, padding=padding, bias=True) | |
| def forward(self, c): | |
| """ | |
| Args: | |
| c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) | |
| Returns: | |
| """ | |
| batch, _, cond_length = c.shape | |
| c = self.input_conv(c) | |
| c = c + self.residual_conv(c) | |
| k = self.kernel_conv(c) | |
| b = self.bias_conv(c) | |
| kernels = k.contiguous().view( | |
| batch, self.conv_layers, self.conv_in_channels, self.conv_out_channels, self.conv_kernel_size, cond_length | |
| ) | |
| bias = b.contiguous().view(batch, self.conv_layers, self.conv_out_channels, cond_length) | |
| return kernels, bias | |
| class LVCBlock(torch.nn.Module): | |
| """the location-variable convolutions""" | |
| def __init__( | |
| self, | |
| in_channels, | |
| cond_channels, | |
| upsample_ratio, | |
| conv_layers=4, | |
| conv_kernel_size=3, | |
| cond_hop_length=256, | |
| kpnet_hidden_channels=64, | |
| kpnet_conv_size=3, | |
| kpnet_dropout=0.0, | |
| ): | |
| super().__init__() | |
| self.cond_hop_length = cond_hop_length | |
| self.conv_layers = conv_layers | |
| self.conv_kernel_size = conv_kernel_size | |
| self.convs = torch.nn.ModuleList() | |
| self.upsample = torch.nn.ConvTranspose1d( | |
| in_channels, | |
| in_channels, | |
| kernel_size=upsample_ratio * 2, | |
| stride=upsample_ratio, | |
| padding=upsample_ratio // 2 + upsample_ratio % 2, | |
| output_padding=upsample_ratio % 2, | |
| ) | |
| self.kernel_predictor = KernelPredictor( | |
| cond_channels=cond_channels, | |
| conv_in_channels=in_channels, | |
| conv_out_channels=2 * in_channels, | |
| conv_layers=conv_layers, | |
| conv_kernel_size=conv_kernel_size, | |
| kpnet_hidden_channels=kpnet_hidden_channels, | |
| kpnet_conv_size=kpnet_conv_size, | |
| kpnet_dropout=kpnet_dropout, | |
| ) | |
| for i in range(conv_layers): | |
| padding = (3**i) * int((conv_kernel_size - 1) / 2) | |
| conv = torch.nn.Conv1d( | |
| in_channels, in_channels, kernel_size=conv_kernel_size, padding=padding, dilation=3**i | |
| ) | |
| self.convs.append(conv) | |
| def forward(self, x, c): | |
| """forward propagation of the location-variable convolutions. | |
| Args: | |
| x (Tensor): the input sequence (batch, in_channels, in_length) | |
| c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) | |
| Returns: | |
| Tensor: the output sequence (batch, in_channels, in_length) | |
| """ | |
| in_channels = x.shape[1] | |
| kernels, bias = self.kernel_predictor(c) | |
| x = F.leaky_relu(x, 0.2) | |
| x = self.upsample(x) | |
| for i in range(self.conv_layers): | |
| y = F.leaky_relu(x, 0.2) | |
| y = self.convs[i](y) | |
| y = F.leaky_relu(y, 0.2) | |
| k = kernels[:, i, :, :, :, :] | |
| b = bias[:, i, :, :] | |
| y = self.location_variable_convolution(y, k, b, 1, self.cond_hop_length) | |
| x = x + torch.sigmoid(y[:, :in_channels, :]) * torch.tanh(y[:, in_channels:, :]) | |
| return x | |
| def location_variable_convolution(x, kernel, bias, dilation, hop_size): | |
| """perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. | |
| Time: 414 ΞΌs Β± 309 ns per loop (mean Β± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. | |
| Args: | |
| x (Tensor): the input sequence (batch, in_channels, in_length). | |
| kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) | |
| bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) | |
| dilation (int): the dilation of convolution. | |
| hop_size (int): the hop_size of the conditioning sequence. | |
| Returns: | |
| (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). | |
| """ | |
| batch, _, in_length = x.shape | |
| batch, _, out_channels, kernel_size, kernel_length = kernel.shape | |
| assert in_length == ( | |
| kernel_length * hop_size | |
| ), f"length of (x, kernel) is not matched, {in_length} vs {kernel_length * hop_size}" | |
| padding = dilation * int((kernel_size - 1) / 2) | |
| x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding) | |
| x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding) | |
| if hop_size < dilation: | |
| x = F.pad(x, (0, dilation), "constant", 0) | |
| x = x.unfold( | |
| 3, dilation, dilation | |
| ) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation) | |
| x = x[:, :, :, :, :hop_size] | |
| x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation) | |
| x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size) | |
| o = torch.einsum("bildsk,biokl->bolsd", x, kernel) | |
| o = o + bias.unsqueeze(-1).unsqueeze(-1) | |
| o = o.contiguous().view(batch, out_channels, -1) | |
| return o | |