Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| from contextlib import contextmanager | |
| from dataclasses import dataclass | |
| from time import time | |
| import torch | |
| import torch.nn.functional as F | |
| import torchaudio | |
| from coqpit import Coqpit | |
| from tqdm import tqdm | |
| from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram | |
| from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, load_voice, wav_to_univnet_mel | |
| from TTS.tts.layers.tortoise.autoregressive import UnifiedVoice | |
| from TTS.tts.layers.tortoise.classifier import AudioMiniEncoderWithClassifierHead | |
| from TTS.tts.layers.tortoise.clvp import CLVP | |
| from TTS.tts.layers.tortoise.diffusion import SpacedDiffusion, get_named_beta_schedule, space_timesteps | |
| from TTS.tts.layers.tortoise.diffusion_decoder import DiffusionTts | |
| from TTS.tts.layers.tortoise.random_latent_generator import RandomLatentConverter | |
| from TTS.tts.layers.tortoise.tokenizer import VoiceBpeTokenizer | |
| from TTS.tts.layers.tortoise.vocoder import VocConf, VocType | |
| from TTS.tts.layers.tortoise.wav2vec_alignment import Wav2VecAlignment | |
| from TTS.tts.models.base_tts import BaseTTS | |
| def pad_or_truncate(t, length): | |
| """ | |
| Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s. | |
| """ | |
| tp = t[..., :length] | |
| if t.shape[-1] == length: | |
| tp = t | |
| elif t.shape[-1] < length: | |
| tp = F.pad(t, (0, length - t.shape[-1])) | |
| return tp | |
| def deterministic_state(seed=None): | |
| """ | |
| Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be | |
| reproduced. | |
| """ | |
| seed = int(time()) if seed is None else seed | |
| torch.manual_seed(seed) | |
| random.seed(seed) | |
| # Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary. | |
| # torch.use_deterministic_algorithms(True) | |
| return seed | |
| def load_discrete_vocoder_diffuser( | |
| trained_diffusion_steps=4000, | |
| desired_diffusion_steps=200, | |
| cond_free=True, | |
| cond_free_k=1, | |
| sampler="ddim", | |
| ): | |
| """ | |
| Helper function to load a GaussianDiffusion instance configured for use as a vocoder. | |
| """ | |
| return SpacedDiffusion( | |
| use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), | |
| model_mean_type="epsilon", | |
| model_var_type="learned_range", | |
| loss_type="mse", | |
| betas=get_named_beta_schedule("linear", trained_diffusion_steps), | |
| conditioning_free=cond_free, | |
| conditioning_free_k=cond_free_k, | |
| sampler=sampler, | |
| ) | |
| def format_conditioning(clip, cond_length=132300, device="cuda", **kwargs): | |
| """ | |
| Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. | |
| """ | |
| gap = clip.shape[-1] - cond_length | |
| if gap < 0: | |
| clip = F.pad(clip, pad=(0, abs(gap))) | |
| elif gap > 0: | |
| rand_start = random.randint(0, gap) | |
| clip = clip[:, rand_start : rand_start + cond_length] | |
| mel_clip = TorchMelSpectrogram(**kwargs)(clip.unsqueeze(0)).squeeze(0) | |
| return mel_clip.unsqueeze(0).to(device) | |
| def fix_autoregressive_output(codes, stop_token, complain=True): | |
| """ | |
| This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was | |
| trained on and what the autoregressive code generator creates (which has no padding or end). | |
| This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with | |
| a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE | |
| and copying out the last few codes. | |
| Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. | |
| """ | |
| # Strip off the autoregressive stop token and add padding. | |
| stop_token_indices = (codes == stop_token).nonzero() | |
| if len(stop_token_indices) == 0: | |
| if complain: | |
| print( | |
| "No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " | |
| "too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " | |
| "try breaking up your input text." | |
| ) | |
| return codes | |
| codes[stop_token_indices] = 83 | |
| stm = stop_token_indices.min().item() | |
| codes[stm:] = 83 | |
| if stm - 3 < codes.shape[0]: | |
| codes[-3] = 45 | |
| codes[-2] = 45 | |
| codes[-1] = 248 | |
| return codes | |
| def do_spectrogram_diffusion( | |
| diffusion_model, | |
| diffuser, | |
| latents, | |
| conditioning_latents, | |
| temperature=1, | |
| verbose=True, | |
| ): | |
| """ | |
| Uses the specified diffusion model to convert discrete codes into a spectrogram. | |
| """ | |
| with torch.no_grad(): | |
| output_seq_len = ( | |
| latents.shape[1] * 4 * 24000 // 22050 | |
| ) # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. | |
| output_shape = (latents.shape[0], 100, output_seq_len) | |
| precomputed_embeddings = diffusion_model.timestep_independent( | |
| latents, conditioning_latents, output_seq_len, False | |
| ) | |
| noise = torch.randn(output_shape, device=latents.device) * temperature | |
| mel = diffuser.sample_loop( | |
| diffusion_model, | |
| output_shape, | |
| noise=noise, | |
| model_kwargs={"precomputed_aligned_embeddings": precomputed_embeddings}, | |
| progress=verbose, | |
| ) | |
| return denormalize_tacotron_mel(mel)[:, :, :output_seq_len] | |
| def classify_audio_clip(clip, model_dir): | |
| """ | |
| Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. | |
| :param clip: torch tensor containing audio waveform data (get it from load_audio) | |
| :return: True if the clip was classified as coming from Tortoise and false if it was classified as real. | |
| """ | |
| classifier = AudioMiniEncoderWithClassifierHead( | |
| 2, | |
| spec_dim=1, | |
| embedding_dim=512, | |
| depth=5, | |
| downsample_factor=4, | |
| resnet_blocks=2, | |
| attn_blocks=4, | |
| num_attn_heads=4, | |
| base_channels=32, | |
| dropout=0, | |
| kernel_size=5, | |
| distribute_zero_label=False, | |
| ) | |
| classifier.load_state_dict(torch.load(os.path.join(model_dir, "classifier.pth"), map_location=torch.device("cpu"))) | |
| clip = clip.cpu().unsqueeze(0) | |
| results = F.softmax(classifier(clip), dim=-1) | |
| return results[0][0] | |
| def pick_best_batch_size_for_gpu(): | |
| """ | |
| Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give | |
| you a good shot. | |
| """ | |
| if torch.cuda.is_available(): | |
| _, available = torch.cuda.mem_get_info() | |
| availableGb = available / (1024**3) | |
| batch_size = 1 | |
| if availableGb > 14: | |
| batch_size = 16 | |
| elif availableGb > 10: | |
| batch_size = 8 | |
| elif availableGb > 7: | |
| batch_size = 4 | |
| return batch_size | |
| class TortoiseAudioConfig(Coqpit): | |
| sample_rate: int = 22050 | |
| diffusion_sample_rate: int = 24000 | |
| output_sample_rate: int = 24000 | |
| class TortoiseArgs(Coqpit): | |
| """A dataclass to represent Tortoise model arguments that define the model structure. | |
| Args: | |
| autoregressive_batch_size (int): The size of the auto-regressive batch. | |
| enable_redaction (bool, optional): Whether to enable redaction. Defaults to True. | |
| high_vram (bool, optional): Whether to use high VRAM. Defaults to False. | |
| kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True. | |
| ar_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None. | |
| clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None. | |
| diff_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None. | |
| num_chars (int, optional): The maximum number of characters to generate. Defaults to 255. | |
| vocoder (VocType, optional): The vocoder to use for synthesis. Defaults to VocConf.Univnet. | |
| For UnifiedVoice model: | |
| ar_max_mel_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604. | |
| ar_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402. | |
| ar_max_conditioning_inputs (int, optional): The maximum conditioning inputs for the autoregressive model. Defaults to 2. | |
| ar_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30. | |
| ar_model_dim (int, optional): The model dimension for the autoregressive model. Defaults to 1024. | |
| ar_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16. | |
| ar_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255. | |
| ar_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255. | |
| ar_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False. | |
| ar_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False. | |
| For DiffTTS model: | |
| diff_model_channels (int, optional): The number of channels for the DiffTTS model. Defaults to 1024. | |
| diff_num_layers (int, optional): The number of layers for the DiffTTS model. Defaults to 10. | |
| diff_in_channels (int, optional): The input channels for the DiffTTS model. Defaults to 100. | |
| diff_out_channels (int, optional): The output channels for the DiffTTS model. Defaults to 200. | |
| diff_in_latent_channels (int, optional): The input latent channels for the DiffTTS model. Defaults to 1024. | |
| diff_in_tokens (int, optional): The input tokens for the DiffTTS model. Defaults to 8193. | |
| diff_dropout (int, optional): The dropout percentage for the DiffTTS model. Defaults to 0. | |
| diff_use_fp16 (bool, optional): Whether to use fp16 for the DiffTTS model. Defaults to False. | |
| diff_num_heads (int, optional): The number of heads for the DiffTTS model. Defaults to 16. | |
| diff_layer_drop (int, optional): The layer dropout percentage for the DiffTTS model. Defaults to 0. | |
| diff_unconditioned_percentage (int, optional): The percentage of unconditioned inputs for the DiffTTS model. Defaults to 0. | |
| For ConditionalLatentVariablePerseq model: | |
| clvp_dim_text (int): The dimension of the text input for the CLVP module. Defaults to 768. | |
| clvp_dim_speech (int): The dimension of the speech input for the CLVP module. Defaults to 768. | |
| clvp_dim_latent (int): The dimension of the latent representation for the CLVP module. Defaults to 768. | |
| clvp_num_text_tokens (int): The number of text tokens used by the CLVP module. Defaults to 256. | |
| clvp_text_enc_depth (int): The depth of the text encoder in the CLVP module. Defaults to 20. | |
| clvp_text_seq_len (int): The maximum sequence length of the text input for the CLVP module. Defaults to 350. | |
| clvp_text_heads (int): The number of attention heads used by the text encoder in the CLVP module. Defaults to 12. | |
| clvp_num_speech_tokens (int): The number of speech tokens used by the CLVP module. Defaults to 8192. | |
| clvp_speech_enc_depth (int): The depth of the speech encoder in the CLVP module. Defaults to 20. | |
| clvp_speech_heads (int): The number of attention heads used by the speech encoder in the CLVP module. Defaults to 12. | |
| clvp_speech_seq_len (int): The maximum sequence length of the speech input for the CLVP module. Defaults to 430. | |
| clvp_use_xformers (bool): A flag indicating whether the model uses transformers in the CLVP module. Defaults to True. | |
| duration_const (int): A constant value used in the model. Defaults to 102400. | |
| """ | |
| autoregressive_batch_size: int = 1 | |
| enable_redaction: bool = False | |
| high_vram: bool = False | |
| kv_cache: bool = True | |
| ar_checkpoint: str = None | |
| clvp_checkpoint: str = None | |
| diff_checkpoint: str = None | |
| num_chars: int = 255 | |
| vocoder: VocType = VocConf.Univnet | |
| # UnifiedVoice params | |
| ar_max_mel_tokens: int = 604 | |
| ar_max_text_tokens: int = 402 | |
| ar_max_conditioning_inputs: int = 2 | |
| ar_layers: int = 30 | |
| ar_model_dim: int = 1024 | |
| ar_heads: int = 16 | |
| ar_number_text_tokens: int = 255 | |
| ar_start_text_token: int = 255 | |
| ar_checkpointing: bool = False | |
| ar_train_solo_embeddings: bool = False | |
| # DiffTTS params | |
| diff_model_channels: int = 1024 | |
| diff_num_layers: int = 10 | |
| diff_in_channels: int = 100 | |
| diff_out_channels: int = 200 | |
| diff_in_latent_channels: int = 1024 | |
| diff_in_tokens: int = 8193 | |
| diff_dropout: int = 0 | |
| diff_use_fp16: bool = False | |
| diff_num_heads: int = 16 | |
| diff_layer_drop: int = 0 | |
| diff_unconditioned_percentage: int = 0 | |
| # clvp params | |
| clvp_dim_text: int = 768 | |
| clvp_dim_speech: int = 768 | |
| clvp_dim_latent: int = 768 | |
| clvp_num_text_tokens: int = 256 | |
| clvp_text_enc_depth: int = 20 | |
| clvp_text_seq_len: int = 350 | |
| clvp_text_heads: int = 12 | |
| clvp_num_speech_tokens: int = 8192 | |
| clvp_speech_enc_depth: int = 20 | |
| clvp_speech_heads: int = 12 | |
| clvp_speech_seq_len: int = 430 | |
| clvp_use_xformers: bool = True | |
| # constants | |
| duration_const: int = 102400 | |
| class Tortoise(BaseTTS): | |
| """Tortoise model class. | |
| Currently only supports inference. | |
| Examples: | |
| >>> from TTS.tts.configs.tortoise_config import TortoiseConfig | |
| >>> from TTS.tts.models.tortoise import Tortoise | |
| >>> config = TortoiseConfig() | |
| >>> model = Tortoise.inif_from_config(config) | |
| >>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) | |
| """ | |
| def __init__(self, config: Coqpit): | |
| super().__init__(config, ap=None, tokenizer=None) | |
| self.mel_norm_path = None | |
| self.config = config | |
| self.ar_checkpoint = self.args.ar_checkpoint | |
| self.diff_checkpoint = self.args.diff_checkpoint # TODO: check if this is even needed | |
| self.models_dir = config.model_dir | |
| self.autoregressive_batch_size = ( | |
| pick_best_batch_size_for_gpu() | |
| if self.args.autoregressive_batch_size is None | |
| else self.args.autoregressive_batch_size | |
| ) | |
| self.enable_redaction = self.args.enable_redaction | |
| self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| if self.enable_redaction: | |
| self.aligner = Wav2VecAlignment() | |
| self.tokenizer = VoiceBpeTokenizer() | |
| self.autoregressive = UnifiedVoice( | |
| max_mel_tokens=self.args.ar_max_mel_tokens, | |
| max_text_tokens=self.args.ar_max_text_tokens, | |
| max_conditioning_inputs=self.args.ar_max_conditioning_inputs, | |
| layers=self.args.ar_layers, | |
| model_dim=self.args.ar_model_dim, | |
| heads=self.args.ar_heads, | |
| number_text_tokens=self.args.ar_number_text_tokens, | |
| start_text_token=self.args.ar_start_text_token, | |
| checkpointing=self.args.ar_checkpointing, | |
| train_solo_embeddings=self.args.ar_train_solo_embeddings, | |
| ).cpu() | |
| self.diffusion = DiffusionTts( | |
| model_channels=self.args.diff_model_channels, | |
| num_layers=self.args.diff_num_layers, | |
| in_channels=self.args.diff_in_channels, | |
| out_channels=self.args.diff_out_channels, | |
| in_latent_channels=self.args.diff_in_latent_channels, | |
| in_tokens=self.args.diff_in_tokens, | |
| dropout=self.args.diff_dropout, | |
| use_fp16=self.args.diff_use_fp16, | |
| num_heads=self.args.diff_num_heads, | |
| layer_drop=self.args.diff_layer_drop, | |
| unconditioned_percentage=self.args.diff_unconditioned_percentage, | |
| ).cpu() | |
| self.clvp = CLVP( | |
| dim_text=self.args.clvp_dim_text, | |
| dim_speech=self.args.clvp_dim_speech, | |
| dim_latent=self.args.clvp_dim_latent, | |
| num_text_tokens=self.args.clvp_num_text_tokens, | |
| text_enc_depth=self.args.clvp_text_enc_depth, | |
| text_seq_len=self.args.clvp_text_seq_len, | |
| text_heads=self.args.clvp_text_heads, | |
| num_speech_tokens=self.args.clvp_num_speech_tokens, | |
| speech_enc_depth=self.args.clvp_speech_enc_depth, | |
| speech_heads=self.args.clvp_speech_heads, | |
| speech_seq_len=self.args.clvp_speech_seq_len, | |
| use_xformers=self.args.clvp_use_xformers, | |
| ).cpu() | |
| self.vocoder = self.args.vocoder.value.constructor().cpu() | |
| # Random latent generators (RLGs) are loaded lazily. | |
| self.rlg_auto = None | |
| self.rlg_diffusion = None | |
| if self.args.high_vram: | |
| self.autoregressive = self.autoregressive.to(self.device) | |
| self.diffusion = self.diffusion.to(self.device) | |
| self.clvp = self.clvp.to(self.device) | |
| self.vocoder = self.vocoder.to(self.device) | |
| self.high_vram = self.args.high_vram | |
| def temporary_cuda(self, model): | |
| if self.high_vram: | |
| yield model | |
| else: | |
| m = model.to(self.device) | |
| yield m | |
| m = model.cpu() | |
| def get_conditioning_latents( | |
| self, | |
| voice_samples, | |
| return_mels=False, | |
| latent_averaging_mode=0, | |
| original_tortoise=False, | |
| ): | |
| """ | |
| Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). | |
| These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic | |
| properties. | |
| :param voice_samples: List of arbitrary reference clips, which should be *pairs* of torch tensors containing arbitrary kHz waveform data. | |
| :param latent_averaging_mode: 0/1/2 for following modes: | |
| 0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples | |
| 1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks | |
| 2 - latents will be generated using (almost) entire voice samples, averaged per voice sample | |
| """ | |
| assert latent_averaging_mode in [ | |
| 0, | |
| 1, | |
| 2, | |
| ], "latent_averaging mode has to be one of (0, 1, 2)" | |
| with torch.no_grad(): | |
| voice_samples = [[v.to(self.device) for v in ls] for ls in voice_samples] | |
| auto_conds = [] | |
| for ls in voice_samples: | |
| auto_conds.append(format_conditioning(ls[0], device=self.device, mel_norm_file=self.mel_norm_path)) | |
| auto_conds = torch.stack(auto_conds, dim=1) | |
| with self.temporary_cuda(self.autoregressive) as ar: | |
| auto_latent = ar.get_conditioning(auto_conds) | |
| diffusion_conds = [] | |
| DURS_CONST = self.args.duration_const | |
| for ls in voice_samples: | |
| # The diffuser operates at a sample rate of 24000 (except for the latent inputs) | |
| sample = torchaudio.functional.resample(ls[0], 22050, 24000) if original_tortoise else ls[1] | |
| if latent_averaging_mode == 0: | |
| sample = pad_or_truncate(sample, DURS_CONST) | |
| cond_mel = wav_to_univnet_mel( | |
| sample.to(self.device), | |
| do_normalization=False, | |
| device=self.device, | |
| ) | |
| diffusion_conds.append(cond_mel) | |
| else: | |
| from math import ceil | |
| if latent_averaging_mode == 2: | |
| temp_diffusion_conds = [] | |
| for chunk in range(ceil(sample.shape[1] / DURS_CONST)): | |
| current_sample = sample[:, chunk * DURS_CONST : (chunk + 1) * DURS_CONST] | |
| current_sample = pad_or_truncate(current_sample, DURS_CONST) | |
| cond_mel = wav_to_univnet_mel( | |
| current_sample.to(self.device), | |
| do_normalization=False, | |
| device=self.device, | |
| ) | |
| if latent_averaging_mode == 1: | |
| diffusion_conds.append(cond_mel) | |
| elif latent_averaging_mode == 2: | |
| temp_diffusion_conds.append(cond_mel) | |
| if latent_averaging_mode == 2: | |
| diffusion_conds.append(torch.stack(temp_diffusion_conds).mean(0)) | |
| diffusion_conds = torch.stack(diffusion_conds, dim=1) | |
| with self.temporary_cuda(self.diffusion) as diffusion: | |
| diffusion_latent = diffusion.get_conditioning(diffusion_conds) | |
| if return_mels: | |
| return auto_latent, diffusion_latent, auto_conds, diffusion_conds | |
| return auto_latent, diffusion_latent | |
| def get_random_conditioning_latents(self): | |
| # Lazy-load the RLG models. | |
| if self.rlg_auto is None: | |
| self.rlg_auto = RandomLatentConverter(1024).eval() | |
| self.rlg_auto.load_state_dict( | |
| torch.load( | |
| os.path.join(self.models_dir, "rlg_auto.pth"), | |
| map_location=torch.device("cpu"), | |
| ) | |
| ) | |
| self.rlg_diffusion = RandomLatentConverter(2048).eval() | |
| self.rlg_diffusion.load_state_dict( | |
| torch.load( | |
| os.path.join(self.models_dir, "rlg_diffuser.pth"), | |
| map_location=torch.device("cpu"), | |
| ) | |
| ) | |
| with torch.no_grad(): | |
| return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0])) | |
| def synthesize(self, text, config, speaker_id="random", voice_dirs=None, **kwargs): | |
| """Synthesize speech with the given input text. | |
| Args: | |
| text (str): Input text. | |
| config (TortoiseConfig): Config with inference parameters. | |
| speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker. | |
| voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None. | |
| **kwargs: Inference settings. See `inference()`. | |
| Returns: | |
| A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, | |
| `text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` | |
| as latents used at inference. | |
| """ | |
| speaker_id = "random" if speaker_id is None else speaker_id | |
| if voice_dirs is not None: | |
| voice_dirs = [voice_dirs] | |
| voice_samples, conditioning_latents = load_voice(speaker_id, voice_dirs) | |
| else: | |
| voice_samples, conditioning_latents = load_voice(speaker_id) | |
| outputs = self.inference_with_config( | |
| text, config, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **kwargs | |
| ) | |
| return_dict = { | |
| "wav": outputs["wav"], | |
| "deterministic_seed": outputs["deterministic_seed"], | |
| "text_inputs": outputs["text"], | |
| "voice_samples": outputs["voice_samples"], | |
| "conditioning_latents": outputs["conditioning_latents"], | |
| } | |
| return return_dict | |
| def inference_with_config(self, text, config, **kwargs): | |
| """ | |
| inference with config | |
| #TODO describe in detail | |
| """ | |
| # Use generally found best tuning knobs for generation. | |
| settings = { | |
| "temperature": config.temperature, | |
| "length_penalty": config.length_penalty, | |
| "repetition_penalty": config.repetition_penalty, | |
| "top_p": config.top_p, | |
| "cond_free_k": config.cond_free_k, | |
| "diffusion_temperature": config.diffusion_temperature, | |
| "sampler": config.sampler, | |
| } | |
| # Presets are defined here. | |
| presets = { | |
| "single_sample": { | |
| "num_autoregressive_samples": 8, | |
| "diffusion_iterations": 10, | |
| "sampler": "ddim", | |
| }, | |
| "ultra_fast": { | |
| "num_autoregressive_samples": 16, | |
| "diffusion_iterations": 10, | |
| "sampler": "ddim", | |
| }, | |
| "ultra_fast_old": { | |
| "num_autoregressive_samples": 16, | |
| "diffusion_iterations": 30, | |
| "cond_free": False, | |
| }, | |
| "very_fast": { | |
| "num_autoregressive_samples": 32, | |
| "diffusion_iterations": 30, | |
| "sampler": "dpm++2m", | |
| }, | |
| "fast": { | |
| "num_autoregressive_samples": 5, | |
| "diffusion_iterations": 50, | |
| "sampler": "ddim", | |
| }, | |
| "fast_old": {"num_autoregressive_samples": 96, "diffusion_iterations": 80}, | |
| "standard": { | |
| "num_autoregressive_samples": 5, | |
| "diffusion_iterations": 200, | |
| }, | |
| "high_quality": { | |
| "num_autoregressive_samples": 256, | |
| "diffusion_iterations": 400, | |
| }, | |
| } | |
| if "preset" in kwargs: | |
| settings.update(presets[kwargs["preset"]]) | |
| kwargs.pop("preset") | |
| settings.update(kwargs) # allow overriding of preset settings with kwargs | |
| return self.inference(text, **settings) | |
| def inference( | |
| self, | |
| text, | |
| voice_samples=None, | |
| conditioning_latents=None, | |
| k=1, | |
| verbose=True, | |
| use_deterministic_seed=None, | |
| return_deterministic_state=False, | |
| latent_averaging_mode=0, | |
| # autoregressive generation parameters follow | |
| num_autoregressive_samples=16, | |
| temperature=0.8, | |
| length_penalty=1, | |
| repetition_penalty=2.0, | |
| top_p=0.8, | |
| max_mel_tokens=500, | |
| # diffusion generation parameters follow | |
| diffusion_iterations=100, | |
| cond_free=True, | |
| cond_free_k=2, | |
| diffusion_temperature=1.0, | |
| sampler="ddim", | |
| half=True, | |
| original_tortoise=False, | |
| **hf_generate_kwargs, | |
| ): | |
| """ | |
| This function produces an audio clip of the given text being spoken with the given reference voice. | |
| Args: | |
| text: (str) Text to be spoken. | |
| voice_samples: (List[Tuple[torch.Tensor]]) List of an arbitrary number of reference clips, which should be tuple-pairs | |
| of torch tensors containing arbitrary kHz waveform data. | |
| conditioning_latents: (Tuple[autoregressive_conditioning_latent, diffusion_conditioning_latent]) A tuple of | |
| (autoregressive_conditioning_latent, diffusion_conditioning_latent), which can be provided in lieu | |
| of voice_samples. This is ignored unless `voice_samples=None`. Conditioning latents can be retrieved | |
| via `get_conditioning_latents()`. | |
| k: (int) The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. | |
| latent_averaging_mode: (int) 0/1/2 for following modes: | |
| 0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples | |
| 1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks | |
| 2 - latents will be generated using (almost) entire voice samples, averaged per voice sample | |
| verbose: (bool) Whether or not to print log messages indicating the progress of creating a clip. Default=true. | |
| num_autoregressive_samples: (int) Number of samples taken from the autoregressive model, all of which are filtered using CLVP. | |
| As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". | |
| temperature: (float) The softmax temperature of the autoregressive model. | |
| length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. | |
| repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce | |
| the incidence of long silences or "uhhhhhhs", etc. | |
| top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. | |
| max_mel_tokens: (int) Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. | |
| typical_sampling: (bool) Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 | |
| I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but could use some tuning. | |
| typical_mass: (float) The typical_mass parameter from the typical_sampling algorithm. | |
| diffusion_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively | |
| refine the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, however. | |
| cond_free: (bool) Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for | |
| each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output of the two | |
| is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and dramatically improves realism. | |
| cond_free_k: (float) Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. | |
| As cond_free_k increases, the output becomes dominated by the conditioning-free signal. | |
| diffusion_temperature: (float) Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 | |
| are the "mean" prediction of the diffusion network and will sound bland and smeared. | |
| hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive transformer. | |
| Extra keyword args fed to this function get forwarded directly to that API. Documentation | |
| here: https://huggingface.co/docs/transformers/internal/generation_utils | |
| Returns: | |
| Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. | |
| Sample rate is 24kHz. | |
| """ | |
| deterministic_seed = deterministic_state(seed=use_deterministic_seed) | |
| text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) | |
| text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary. | |
| assert ( | |
| text_tokens.shape[-1] < 400 | |
| ), "Too much text provided. Break the text up into separate segments and re-try inference." | |
| if voice_samples is not None: | |
| ( | |
| auto_conditioning, | |
| diffusion_conditioning, | |
| _, | |
| _, | |
| ) = self.get_conditioning_latents( | |
| voice_samples, | |
| return_mels=True, | |
| latent_averaging_mode=latent_averaging_mode, | |
| original_tortoise=original_tortoise, | |
| ) | |
| elif conditioning_latents is not None: | |
| auto_conditioning, diffusion_conditioning = conditioning_latents | |
| else: | |
| ( | |
| auto_conditioning, | |
| diffusion_conditioning, | |
| ) = self.get_random_conditioning_latents() | |
| auto_conditioning = auto_conditioning.to(self.device) | |
| diffusion_conditioning = diffusion_conditioning.to(self.device) | |
| diffuser = load_discrete_vocoder_diffuser( | |
| desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k, sampler=sampler | |
| ) | |
| # in the case of single_sample, | |
| orig_batch_size = self.autoregressive_batch_size | |
| while num_autoregressive_samples % self.autoregressive_batch_size: | |
| self.autoregressive_batch_size //= 2 | |
| with torch.no_grad(): | |
| samples = [] | |
| num_batches = num_autoregressive_samples // self.autoregressive_batch_size | |
| stop_mel_token = self.autoregressive.stop_mel_token | |
| calm_token = ( | |
| 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" | |
| ) | |
| self.autoregressive = self.autoregressive.to(self.device) | |
| if verbose: | |
| print("Generating autoregressive samples..") | |
| with self.temporary_cuda(self.autoregressive) as autoregressive, torch.autocast( | |
| device_type="cuda", dtype=torch.float16, enabled=half | |
| ): | |
| for b in tqdm(range(num_batches), disable=not verbose): | |
| codes = autoregressive.inference_speech( | |
| auto_conditioning, | |
| text_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| num_return_sequences=self.autoregressive_batch_size, | |
| length_penalty=length_penalty, | |
| repetition_penalty=repetition_penalty, | |
| max_generate_length=max_mel_tokens, | |
| **hf_generate_kwargs, | |
| ) | |
| padding_needed = max_mel_tokens - codes.shape[1] | |
| codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) | |
| samples.append(codes) | |
| self.autoregressive_batch_size = orig_batch_size # in the case of single_sample | |
| clip_results = [] | |
| with self.temporary_cuda(self.clvp) as clvp, torch.autocast( | |
| device_type="cuda", dtype=torch.float16, enabled=half | |
| ): | |
| for batch in tqdm(samples, disable=not verbose): | |
| for i in range(batch.shape[0]): | |
| batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) | |
| clvp_res = clvp( | |
| text_tokens.repeat(batch.shape[0], 1), | |
| batch, | |
| return_loss=False, | |
| ) | |
| clip_results.append(clvp_res) | |
| clip_results = torch.cat(clip_results, dim=0) | |
| samples = torch.cat(samples, dim=0) | |
| best_results = samples[torch.topk(clip_results, k=k).indices] | |
| del samples | |
| # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning | |
| # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these | |
| # results, but will increase memory usage. | |
| with self.temporary_cuda(self.autoregressive) as autoregressive: | |
| best_latents = autoregressive( | |
| auto_conditioning.repeat(k, 1), | |
| text_tokens.repeat(k, 1), | |
| torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), | |
| best_results, | |
| torch.tensor( | |
| [best_results.shape[-1] * self.autoregressive.mel_length_compression], | |
| device=text_tokens.device, | |
| ), | |
| return_latent=True, | |
| clip_inputs=False, | |
| ) | |
| del auto_conditioning | |
| if verbose: | |
| print("Transforming autoregressive outputs into audio..") | |
| wav_candidates = [] | |
| for b in range(best_results.shape[0]): | |
| codes = best_results[b].unsqueeze(0) | |
| latents = best_latents[b].unsqueeze(0) | |
| # Find the first occurrence of the "calm" token and trim the codes to that. | |
| ctokens = 0 | |
| for code in range(codes.shape[-1]): | |
| if codes[0, code] == calm_token: | |
| ctokens += 1 | |
| else: | |
| ctokens = 0 | |
| if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. | |
| latents = latents[:, :code] | |
| break | |
| with self.temporary_cuda(self.diffusion) as diffusion: | |
| mel = do_spectrogram_diffusion( | |
| diffusion, | |
| diffuser, | |
| latents, | |
| diffusion_conditioning, | |
| temperature=diffusion_temperature, | |
| verbose=verbose, | |
| ) | |
| with self.temporary_cuda(self.vocoder) as vocoder: | |
| wav = vocoder.inference(mel) | |
| wav_candidates.append(wav.cpu()) | |
| def potentially_redact(clip, text): | |
| if self.enable_redaction: | |
| return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1) | |
| return clip | |
| wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates] | |
| if len(wav_candidates) > 1: | |
| res = wav_candidates | |
| else: | |
| res = wav_candidates[0] | |
| return_dict = { | |
| "wav": res, | |
| "deterministic_seed": None, | |
| "text": None, | |
| "voice_samples": None, | |
| "conditioning_latents": None, | |
| } | |
| if return_deterministic_state: | |
| return_dict = { | |
| "wav": res, | |
| "deterministic_seed": deterministic_seed, | |
| "text": text, | |
| "voice_samples": voice_samples, | |
| "conditioning_latents": conditioning_latents, | |
| } | |
| return return_dict | |
| def forward(self): | |
| raise NotImplementedError("Tortoise Training is not implemented") | |
| def eval_step(self): | |
| raise NotImplementedError("Tortoise Training is not implemented") | |
| def init_from_config(config: "TortoiseConfig", **kwargs): # pylint: disable=unused-argument | |
| return Tortoise(config) | |
| def load_checkpoint( | |
| self, | |
| config, | |
| checkpoint_dir, | |
| ar_checkpoint_path=None, | |
| diff_checkpoint_path=None, | |
| clvp_checkpoint_path=None, | |
| vocoder_checkpoint_path=None, | |
| eval=False, | |
| strict=True, | |
| **kwargs, | |
| ): # pylint: disable=unused-argument, redefined-builtin | |
| """Load a model checkpoints from a directory. This model is with multiple checkpoint files and it | |
| expects to have all the files to be under the given `checkpoint_dir` with the rigth names. | |
| If eval is True, set the model to eval mode. | |
| Args: | |
| config (TortoiseConfig): The model config. | |
| checkpoint_dir (str): The directory where the checkpoints are stored. | |
| ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None. | |
| diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None. | |
| clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None. | |
| vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None. | |
| eval (bool, optional): Whether to set the model to eval mode. Defaults to False. | |
| strict (bool, optional): Whether to load the model strictly. Defaults to True. | |
| """ | |
| if self.models_dir is None: | |
| self.models_dir = checkpoint_dir | |
| ar_path = ar_checkpoint_path or os.path.join(checkpoint_dir, "autoregressive.pth") | |
| diff_path = diff_checkpoint_path or os.path.join(checkpoint_dir, "diffusion_decoder.pth") | |
| clvp_path = clvp_checkpoint_path or os.path.join(checkpoint_dir, "clvp2.pth") | |
| vocoder_checkpoint_path = vocoder_checkpoint_path or os.path.join(checkpoint_dir, "vocoder.pth") | |
| self.mel_norm_path = os.path.join(checkpoint_dir, "mel_norms.pth") | |
| if os.path.exists(ar_path): | |
| # remove keys from the checkpoint that are not in the model | |
| checkpoint = torch.load(ar_path, map_location=torch.device("cpu")) | |
| # strict set False | |
| # due to removed `bias` and `masked_bias` changes in Transformers | |
| self.autoregressive.load_state_dict(checkpoint, strict=False) | |
| if os.path.exists(diff_path): | |
| self.diffusion.load_state_dict(torch.load(diff_path), strict=strict) | |
| if os.path.exists(clvp_path): | |
| self.clvp.load_state_dict(torch.load(clvp_path), strict=strict) | |
| if os.path.exists(vocoder_checkpoint_path): | |
| self.vocoder.load_state_dict( | |
| config.model_args.vocoder.value.optionally_index( | |
| torch.load( | |
| vocoder_checkpoint_path, | |
| map_location=torch.device("cpu"), | |
| ) | |
| ) | |
| ) | |
| if eval: | |
| self.autoregressive.post_init_gpt2_config(self.args.kv_cache) | |
| self.autoregressive.eval() | |
| self.diffusion.eval() | |
| self.clvp.eval() | |
| self.vocoder.eval() | |
| def train_step(self): | |
| raise NotImplementedError("Tortoise Training is not implemented") | |