Spaces:
Running
on
L4
Running
on
L4
Commit
·
a342aa8
0
Parent(s):
Initial commit
Browse filesCo-authored-by: Aaryaman Vasishta <[email protected]>
- .gitattributes +1 -0
- .gitignore +50 -0
- .gitmodules +3 -0
- LICENSE +124 -0
- README.md +17 -0
- assets/advance/backyard-7_0.jpg +3 -0
- assets/advance/backyard-7_1.jpg +3 -0
- assets/advance/backyard-7_2.jpg +3 -0
- assets/advance/backyard-7_3.jpg +3 -0
- assets/advance/backyard-7_4.jpg +3 -0
- assets/advance/backyard-7_5.jpg +3 -0
- assets/advance/backyard-7_6.jpg +3 -0
- assets/advance/blue-car.jpg +1 -0
- assets/advance/garden-4_0.jpg +3 -0
- assets/advance/garden-4_1.jpg +3 -0
- assets/advance/garden-4_2.jpg +3 -0
- assets/advance/garden-4_3.jpg +3 -0
- assets/advance/telebooth-2_0.jpg +3 -0
- assets/advance/telebooth-2_1.jpg +3 -0
- assets/advance/vgg-lab-4_0.png +3 -0
- assets/advance/vgg-lab-4_1.png +3 -0
- assets/advance/vgg-lab-4_2.png +3 -0
- assets/advance/vgg-lab-4_3.png +3 -0
- assets/basic/blue-car.jpg +3 -0
- assets/basic/hilly-countryside.jpg +3 -0
- assets/basic/lily-dragon.png +3 -0
- assets/basic/llff-room.jpg +3 -0
- assets/basic/mountain-lake.jpg +3 -0
- assets/basic/vasedeck.jpg +3 -0
- assets/basic/vgg-lab-4_0.png +1 -0
- demo_gr.py +1238 -0
- requirements.txt +35 -0
- seva/__init__.py +0 -0
- seva/data_io.py +553 -0
- seva/eval.py +1988 -0
- seva/geometry.py +811 -0
- seva/gui.py +975 -0
- seva/model.py +234 -0
- seva/modules/__init__.py +0 -0
- seva/modules/autoencoder.py +51 -0
- seva/modules/conditioner.py +39 -0
- seva/modules/layers.py +140 -0
- seva/modules/preprocessor.py +116 -0
- seva/modules/transformer.py +247 -0
- seva/sampling.py +405 -0
- seva/utils.py +56 -0
- third_party/dust3r +1 -0
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
assets/** filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.envrc
|
2 |
+
.venv/
|
3 |
+
.gradio/
|
4 |
+
work_dirs*
|
5 |
+
logs*
|
6 |
+
pull_changes.sh
|
7 |
+
|
8 |
+
# Byte-compiled files
|
9 |
+
__pycache__/
|
10 |
+
*.py[cod]
|
11 |
+
|
12 |
+
# Virtual environments
|
13 |
+
env/
|
14 |
+
venv/
|
15 |
+
ENV/
|
16 |
+
.VENV/
|
17 |
+
|
18 |
+
# Distribution files
|
19 |
+
build/
|
20 |
+
dist/
|
21 |
+
*.egg-info/
|
22 |
+
|
23 |
+
# Logs and temporary files
|
24 |
+
*.log
|
25 |
+
*.tmp
|
26 |
+
*.bak
|
27 |
+
*.swp
|
28 |
+
|
29 |
+
# IDE files
|
30 |
+
.idea/
|
31 |
+
.vscode/
|
32 |
+
*.sublime-workspace
|
33 |
+
*.sublime-project
|
34 |
+
|
35 |
+
# OS files
|
36 |
+
.DS_Store
|
37 |
+
Thumbs.db
|
38 |
+
|
39 |
+
# Testing and coverage
|
40 |
+
htmlcov/
|
41 |
+
.coverage
|
42 |
+
*.cover
|
43 |
+
*.py,cover
|
44 |
+
.cache/
|
45 |
+
|
46 |
+
# Jupyter Notebook checkpoints
|
47 |
+
.ipynb_checkpoints/
|
48 |
+
|
49 |
+
# Pre-commit hooks
|
50 |
+
.pre-commit-config.yaml~
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "third_party/dust3r"]
|
2 |
+
path = third_party/dust3r
|
3 |
+
url = https://github.com/jensenstability/dust3r
|
LICENSE
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Stability AI Non-Commercial License Agreement
|
2 |
+
Last Updated: February 20, 2025
|
3 |
+
|
4 |
+
I. INTRODUCTION
|
5 |
+
|
6 |
+
This Stability AI Non-Commercial License Agreement (the “Agreement”) applies to any individual person or entity
|
7 |
+
(“You”, “Your” or “Licensee”) that uses or distributes any portion or element of the Stability AI Materials or
|
8 |
+
Derivative Works thereof for any Research & Non-Commercial use. Capitalized terms not otherwise defined herein
|
9 |
+
are defined in Section IV below.
|
10 |
+
|
11 |
+
This Agreement is intended to allow research and non-commercial uses of the Model free of charge.
|
12 |
+
|
13 |
+
By clicking “I Accept” or by using or distributing or using any portion or element of the Stability Materials
|
14 |
+
or Derivative Works, You agree that You have read, understood and are bound by the terms of this Agreement.
|
15 |
+
|
16 |
+
If You are acting on behalf of a company, organization, or other entity, then “You” includes you and that entity,
|
17 |
+
and You agree that You:
|
18 |
+
(i) are an authorized representative of such entity with the authority to bind such entity to this Agreement, and
|
19 |
+
(ii) You agree to the terms of this Agreement on that entity’s behalf.
|
20 |
+
|
21 |
+
---
|
22 |
+
|
23 |
+
II. RESEARCH & NON-COMMERCIAL USE LICENSE
|
24 |
+
|
25 |
+
Subject to the terms of this Agreement, Stability AI grants You a non-exclusive, worldwide, non-transferable,
|
26 |
+
non-sublicensable, revocable, and royalty-free limited license under Stability AI’s intellectual property or other
|
27 |
+
rights owned by Stability AI embodied in the Stability AI Materials to use, reproduce, distribute, and create
|
28 |
+
Derivative Works of, and make modifications to, the Stability AI Materials for any Research or Non-Commercial Purpose.
|
29 |
+
|
30 |
+
- **“Research Purpose”** means academic or scientific advancement, and in each case, is not primarily intended
|
31 |
+
for commercial advantage or monetary compensation to You or others.
|
32 |
+
- **“Non-Commercial Purpose”** means any purpose other than a Research Purpose that is not primarily intended
|
33 |
+
for commercial advantage or monetary compensation to You or others, such as personal use (i.e., hobbyist)
|
34 |
+
or evaluation and testing.
|
35 |
+
|
36 |
+
---
|
37 |
+
|
38 |
+
III. GENERAL TERMS
|
39 |
+
|
40 |
+
Your Research or Non-Commercial license under this Agreement is subject to the following terms.
|
41 |
+
|
42 |
+
### a. Distribution & Attribution
|
43 |
+
If You distribute or make available the Stability AI Materials or a Derivative Work to a third party, or a product
|
44 |
+
or service that uses any portion of them, You shall:
|
45 |
+
1. Provide a copy of this Agreement to that third party.
|
46 |
+
2. Retain the following attribution notice within a **"Notice"** text file distributed as a part of such copies:
|
47 |
+
|
48 |
+
**"This Stability AI Model is licensed under the Stability AI Non-Commercial License,
|
49 |
+
Copyright © Stability AI Ltd. All Rights Reserved."**
|
50 |
+
|
51 |
+
3. Prominently display **“Powered by Stability AI”** on a related website, user interface, blog post,
|
52 |
+
about page, or product documentation.
|
53 |
+
4. If You create a Derivative Work, You may add your own attribution notice(s) to the **"Notice"** text file
|
54 |
+
included with that Derivative Work, provided that You clearly indicate which attributions apply to the
|
55 |
+
Stability AI Materials and state in the **"Notice"** text file that You changed the Stability AI Materials
|
56 |
+
and how it was modified.
|
57 |
+
|
58 |
+
### b. Use Restrictions
|
59 |
+
Your use of the Stability AI Materials and Derivative Works, including any output or results of the Stability
|
60 |
+
AI Materials or Derivative Works, must comply with applicable laws and regulations (including Trade Control
|
61 |
+
Laws and equivalent regulations) and adhere to the Documentation and Stability AI’s AUP, which is hereby
|
62 |
+
incorporated by reference.
|
63 |
+
|
64 |
+
Furthermore, You will not use the Stability AI Materials or Derivative Works, or any output or results of the
|
65 |
+
Stability AI Materials or Derivative Works, to create or improve any foundational generative AI model
|
66 |
+
(excluding the Model or Derivative Works).
|
67 |
+
|
68 |
+
### c. Intellectual Property
|
69 |
+
|
70 |
+
#### (i) Trademark License
|
71 |
+
No trademark licenses are granted under this Agreement, and in connection with the Stability AI Materials
|
72 |
+
or Derivative Works, You may not use any name or mark owned by or associated with Stability AI or any of
|
73 |
+
its Affiliates, except as required under Section IV(a) herein.
|
74 |
+
|
75 |
+
#### (ii) Ownership of Derivative Works
|
76 |
+
As between You and Stability AI, You are the owner of Derivative Works You create, subject to Stability AI’s
|
77 |
+
ownership of the Stability AI Materials and any Derivative Works made by or for Stability AI.
|
78 |
+
|
79 |
+
#### (iii) Ownership of Outputs
|
80 |
+
As between You and Stability AI, You own any outputs generated from the Model or Derivative Works to the extent
|
81 |
+
permitted by applicable law.
|
82 |
+
|
83 |
+
#### (iv) Disputes
|
84 |
+
If You or Your Affiliate(s) institute litigation or other proceedings against Stability AI (including a
|
85 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Stability AI Materials, Derivative Works, or
|
86 |
+
associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual
|
87 |
+
property or other rights owned or licensable by You, then any licenses granted to You under this Agreement
|
88 |
+
shall terminate as of the date such litigation or claim is filed or instituted.
|
89 |
+
|
90 |
+
You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out
|
91 |
+
of or related to Your use or distribution of the Stability AI Materials or Derivative Works in violation of
|
92 |
+
this Agreement.
|
93 |
+
|
94 |
+
#### (v) Feedback
|
95 |
+
From time to time, You may provide Stability AI with verbal and/or written suggestions, comments, or other
|
96 |
+
feedback related to Stability AI’s existing or prospective technology, products, or services (collectively,
|
97 |
+
“Feedback”).
|
98 |
+
|
99 |
+
You are not obligated to provide Stability AI with Feedback, but to the extent that You do, You hereby grant
|
100 |
+
Stability AI a **perpetual, irrevocable, royalty-free, fully-paid, sub-licensable, transferable, non-exclusive,
|
101 |
+
worldwide right and license** to exploit the Feedback in any manner without restriction.
|
102 |
+
|
103 |
+
Your Feedback is provided **“AS IS”** and You make no warranties whatsoever about any Feedback.
|
104 |
+
|
105 |
+
---
|
106 |
+
|
107 |
+
IV. DEFINITIONS
|
108 |
+
|
109 |
+
- **“Affiliate(s)”** means any entity that directly or indirectly controls, is controlled by, or is under common
|
110 |
+
control with the subject entity. For purposes of this definition, “control” means direct or indirect ownership
|
111 |
+
or control of more than 50% of the voting interests of the subject entity.
|
112 |
+
- **“AUP”** means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may
|
113 |
+
be updated from time to time.
|
114 |
+
- **"Derivative Work(s)"** means:
|
115 |
+
(a) Any derivative work of the Stability AI Materials as recognized by U.S. copyright laws.
|
116 |
+
(b) Any modifications to a Model, and any other model created which is based on or derived from the Model or
|
117 |
+
the Model’s output, including **fine-tune** and **low-rank adaptation** models derived from a Model or
|
118 |
+
a Model’s output, but does not include the output of any Model.
|
119 |
+
- **“Model”** means Stability AI’s Stable Virtual Camera model.
|
120 |
+
- **"Stability AI" or "we"** means Stability AI Ltd. and its Affiliates.
|
121 |
+
- **"Software"** means Stability AI’s proprietary software made available under this Agreement now or in the future.
|
122 |
+
- **“Stability AI Materials”** means, collectively, Stability’s proprietary Model, Software, and Documentation
|
123 |
+
(and any portion or combination thereof) made available under this Agreement.
|
124 |
+
- **“Trade Control Laws”** means any applicable U.S. and non-U.S. export control and trade sanctions laws and regulations.
|
README.md
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Stable Virtual Camera
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.17.0
|
8 |
+
app_file: demo_gr.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
- **Project Page**: [https://stable-virtual-camera.github.io/](https://stable-virtual-camera.github.io/)
|
13 |
+
- **Paper**: [https://stable-virtual-camera.github.io/assets/paper.pdf](http://https://stable-virtual-camera.github.io/assets/paper.pdf)
|
14 |
+
- **Blog**: [https://stability.ai/news/introducing-stable-virtual-camera-multi-view-video-generation-with-3d-camera-control](https://stability.ai/news/introducing-stable-virtual-camera-multi-view-video-generation-with-3d-camera-control)
|
15 |
+
- **Code**: [https://github.com/Stability-AI/stable-virtual-camera](https://github.com/Stability-AI/stable-virtual-camera)
|
16 |
+
- **Model Card**: [https://huggingface.co/stabilityai/stable-virtual-camera](https://huggingface.co/stabilityai/stable-virtual-camera)
|
17 |
+
- **Video**: [https://www.youtube.com/channel/UCLLlVDcS7nNenT_zzO3OPxQ](http://https://www.youtube.com/channel/UCLLlVDcS7nNenT_zzO3OPxQ)
|
assets/advance/backyard-7_0.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/backyard-7_1.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/backyard-7_2.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/backyard-7_3.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/backyard-7_4.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/backyard-7_5.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/backyard-7_6.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/blue-car.jpg
ADDED
![]() |
assets/advance/garden-4_0.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/garden-4_1.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/garden-4_2.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/garden-4_3.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/telebooth-2_0.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/telebooth-2_1.jpg
ADDED
![]() |
Git LFS Details
|
assets/advance/vgg-lab-4_0.png
ADDED
![]() |
Git LFS Details
|
assets/advance/vgg-lab-4_1.png
ADDED
![]() |
Git LFS Details
|
assets/advance/vgg-lab-4_2.png
ADDED
![]() |
Git LFS Details
|
assets/advance/vgg-lab-4_3.png
ADDED
![]() |
Git LFS Details
|
assets/basic/blue-car.jpg
ADDED
![]() |
Git LFS Details
|
assets/basic/hilly-countryside.jpg
ADDED
![]() |
Git LFS Details
|
assets/basic/lily-dragon.png
ADDED
![]() |
Git LFS Details
|
assets/basic/llff-room.jpg
ADDED
![]() |
Git LFS Details
|
assets/basic/mountain-lake.jpg
ADDED
![]() |
Git LFS Details
|
assets/basic/vasedeck.jpg
ADDED
![]() |
Git LFS Details
|
assets/basic/vgg-lab-4_0.png
ADDED
![]() |
demo_gr.py
ADDED
@@ -0,0 +1,1238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
import queue
|
6 |
+
import secrets
|
7 |
+
import threading
|
8 |
+
import time
|
9 |
+
from datetime import datetime
|
10 |
+
from glob import glob
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import Literal
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
import httpx
|
16 |
+
import imageio.v3 as iio
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import tyro
|
21 |
+
import viser
|
22 |
+
import viser.transforms as vt
|
23 |
+
from einops import rearrange
|
24 |
+
from gradio import networking
|
25 |
+
from gradio.context import LocalContext
|
26 |
+
from gradio.tunneling import CERTIFICATE_PATH, Tunnel
|
27 |
+
|
28 |
+
from seva.eval import (
|
29 |
+
IS_TORCH_NIGHTLY,
|
30 |
+
chunk_input_and_test,
|
31 |
+
create_transforms_simple,
|
32 |
+
infer_prior_stats,
|
33 |
+
run_one_scene,
|
34 |
+
transform_img_and_K,
|
35 |
+
)
|
36 |
+
from seva.geometry import (
|
37 |
+
DEFAULT_FOV_RAD,
|
38 |
+
get_default_intrinsics,
|
39 |
+
get_preset_pose_fov,
|
40 |
+
normalize_scene,
|
41 |
+
)
|
42 |
+
from seva.gui import define_gui
|
43 |
+
from seva.model import SGMWrapper
|
44 |
+
from seva.modules.autoencoder import AutoEncoder
|
45 |
+
from seva.modules.conditioner import CLIPConditioner
|
46 |
+
from seva.modules.preprocessor import Dust3rPipeline
|
47 |
+
from seva.sampling import DDPMDiscretization, DiscreteDenoiser
|
48 |
+
from seva.utils import load_model
|
49 |
+
|
50 |
+
device = "cuda:0"
|
51 |
+
|
52 |
+
|
53 |
+
# Constants.
|
54 |
+
WORK_DIR = "work_dirs/demo_gr"
|
55 |
+
MAX_SESSIONS = 1
|
56 |
+
ADVANCE_EXAMPLE_MAP = [
|
57 |
+
(
|
58 |
+
"assets/advance/blue-car.jpg",
|
59 |
+
["assets/advance/blue-car.jpg"],
|
60 |
+
),
|
61 |
+
(
|
62 |
+
"assets/advance/garden-4_0.jpg",
|
63 |
+
[
|
64 |
+
"assets/advance/garden-4_0.jpg",
|
65 |
+
"assets/advance/garden-4_1.jpg",
|
66 |
+
"assets/advance/garden-4_2.jpg",
|
67 |
+
"assets/advance/garden-4_3.jpg",
|
68 |
+
],
|
69 |
+
),
|
70 |
+
(
|
71 |
+
"assets/advance/vgg-lab-4_0.png",
|
72 |
+
[
|
73 |
+
"assets/advance/vgg-lab-4_0.png",
|
74 |
+
"assets/advance/vgg-lab-4_1.png",
|
75 |
+
"assets/advance/vgg-lab-4_2.png",
|
76 |
+
"assets/advance/vgg-lab-4_3.png",
|
77 |
+
],
|
78 |
+
),
|
79 |
+
(
|
80 |
+
"assets/advance/telebooth-2_0.jpg",
|
81 |
+
[
|
82 |
+
"assets/advance/telebooth-2_0.jpg",
|
83 |
+
"assets/advance/telebooth-2_1.jpg",
|
84 |
+
],
|
85 |
+
),
|
86 |
+
(
|
87 |
+
"assets/advance/backyard-7_0.jpg",
|
88 |
+
[
|
89 |
+
"assets/advance/backyard-7_0.jpg",
|
90 |
+
"assets/advance/backyard-7_1.jpg",
|
91 |
+
"assets/advance/backyard-7_2.jpg",
|
92 |
+
"assets/advance/backyard-7_3.jpg",
|
93 |
+
"assets/advance/backyard-7_4.jpg",
|
94 |
+
"assets/advance/backyard-7_5.jpg",
|
95 |
+
"assets/advance/backyard-7_6.jpg",
|
96 |
+
],
|
97 |
+
),
|
98 |
+
]
|
99 |
+
|
100 |
+
if IS_TORCH_NIGHTLY:
|
101 |
+
COMPILE = True
|
102 |
+
os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
|
103 |
+
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
104 |
+
else:
|
105 |
+
COMPILE = False
|
106 |
+
|
107 |
+
# Shared global variables across sessions.
|
108 |
+
DUST3R = Dust3rPipeline(device=device) # type: ignore
|
109 |
+
MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device)
|
110 |
+
AE = AutoEncoder(chunk_size=1).to(device)
|
111 |
+
CONDITIONER = CLIPConditioner().to(device)
|
112 |
+
DISCRETIZATION = DDPMDiscretization()
|
113 |
+
DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device)
|
114 |
+
VERSION_DICT = {
|
115 |
+
"H": 576,
|
116 |
+
"W": 576,
|
117 |
+
"T": 21,
|
118 |
+
"C": 4,
|
119 |
+
"f": 8,
|
120 |
+
"options": {},
|
121 |
+
}
|
122 |
+
SERVERS = {}
|
123 |
+
ABORT_EVENTS = {}
|
124 |
+
|
125 |
+
if COMPILE:
|
126 |
+
MODEL = torch.compile(MODEL)
|
127 |
+
CONDITIONER = torch.compile(CONDITIONER)
|
128 |
+
AE = torch.compile(AE)
|
129 |
+
|
130 |
+
|
131 |
+
class SevaRenderer(object):
|
132 |
+
def __init__(self, server: viser.ViserServer):
|
133 |
+
self.server = server
|
134 |
+
self.gui_state = None
|
135 |
+
|
136 |
+
def preprocess(
|
137 |
+
self, input_img_path_or_tuples: list[tuple[str, None]] | str
|
138 |
+
) -> tuple[dict, dict, dict]:
|
139 |
+
# Simply hardcode these such that aspect ratio is always kept and
|
140 |
+
# shorter side is resized to 576. This is only to make GUI option fewer
|
141 |
+
# though, changing it still works.
|
142 |
+
shorter: int = 576
|
143 |
+
# Has to be 64 multiple for the network.
|
144 |
+
shorter = round(shorter / 64) * 64
|
145 |
+
|
146 |
+
if isinstance(input_img_path_or_tuples, str):
|
147 |
+
# Assume `Basic` demo mode: just hardcode the camera parameters and ignore points.
|
148 |
+
input_imgs = torch.as_tensor(
|
149 |
+
iio.imread(input_img_path_or_tuples) / 255.0, dtype=torch.float32
|
150 |
+
)[None, ..., :3]
|
151 |
+
input_imgs = transform_img_and_K(
|
152 |
+
input_imgs.permute(0, 3, 1, 2),
|
153 |
+
shorter,
|
154 |
+
K=None,
|
155 |
+
size_stride=64,
|
156 |
+
)[0].permute(0, 2, 3, 1)
|
157 |
+
input_Ks = get_default_intrinsics(
|
158 |
+
aspect_ratio=input_imgs.shape[2] / input_imgs.shape[1]
|
159 |
+
)
|
160 |
+
input_c2ws = torch.eye(4)[None]
|
161 |
+
# Simulate a small time interval such that gradio can update
|
162 |
+
# propgress properly.
|
163 |
+
time.sleep(0.1)
|
164 |
+
return (
|
165 |
+
{
|
166 |
+
"input_imgs": input_imgs,
|
167 |
+
"input_Ks": input_Ks,
|
168 |
+
"input_c2ws": input_c2ws,
|
169 |
+
"input_wh": (input_imgs.shape[2], input_imgs.shape[1]),
|
170 |
+
"points": [np.zeros((0, 3))],
|
171 |
+
"point_colors": [np.zeros((0, 3))],
|
172 |
+
"scene_scale": 1.0,
|
173 |
+
},
|
174 |
+
gr.update(visible=False),
|
175 |
+
gr.update(),
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
# Assume `Advance` demo mode: use dust3r to extract camera parameters and points.
|
179 |
+
img_paths = [p for (p, _) in input_img_path_or_tuples]
|
180 |
+
(
|
181 |
+
input_imgs,
|
182 |
+
input_Ks,
|
183 |
+
input_c2ws,
|
184 |
+
points,
|
185 |
+
point_colors,
|
186 |
+
) = DUST3R.infer_cameras_and_points(img_paths)
|
187 |
+
num_inputs = len(img_paths)
|
188 |
+
if num_inputs == 1:
|
189 |
+
input_imgs, input_Ks, input_c2ws, points, point_colors = (
|
190 |
+
input_imgs[:1],
|
191 |
+
input_Ks[:1],
|
192 |
+
input_c2ws[:1],
|
193 |
+
points[:1],
|
194 |
+
point_colors[:1],
|
195 |
+
)
|
196 |
+
input_imgs = [img[..., :3] for img in input_imgs]
|
197 |
+
# Normalize the scene.
|
198 |
+
point_chunks = [p.shape[0] for p in points]
|
199 |
+
point_indices = np.cumsum(point_chunks)[:-1]
|
200 |
+
input_c2ws, points, _ = normalize_scene( # type: ignore
|
201 |
+
input_c2ws,
|
202 |
+
np.concatenate(points, 0),
|
203 |
+
camera_center_method="poses",
|
204 |
+
)
|
205 |
+
points = np.split(points, point_indices, 0)
|
206 |
+
# Scale camera and points for viewport visualization.
|
207 |
+
scene_scale = np.median(
|
208 |
+
np.ptp(np.concatenate([input_c2ws[:, :3, 3], *points], 0), -1)
|
209 |
+
)
|
210 |
+
input_c2ws[:, :3, 3] /= scene_scale
|
211 |
+
points = [point / scene_scale for point in points]
|
212 |
+
input_imgs = [
|
213 |
+
torch.as_tensor(img / 255.0, dtype=torch.float32) for img in input_imgs
|
214 |
+
]
|
215 |
+
input_Ks = torch.as_tensor(input_Ks)
|
216 |
+
input_c2ws = torch.as_tensor(input_c2ws)
|
217 |
+
new_input_imgs, new_input_Ks = [], []
|
218 |
+
for img, K in zip(input_imgs, input_Ks):
|
219 |
+
img = rearrange(img, "h w c -> 1 c h w")
|
220 |
+
# If you don't want to keep aspect ratio and want to always center crop, use this:
|
221 |
+
# img, K = transform_img_and_K(img, (shorter, shorter), K=K[None])
|
222 |
+
img, K = transform_img_and_K(img, shorter, K=K[None], size_stride=64)
|
223 |
+
assert isinstance(K, torch.Tensor)
|
224 |
+
K = K / K.new_tensor([img.shape[-1], img.shape[-2], 1])[:, None]
|
225 |
+
new_input_imgs.append(img)
|
226 |
+
new_input_Ks.append(K)
|
227 |
+
input_imgs = torch.cat(new_input_imgs, 0)
|
228 |
+
input_imgs = rearrange(input_imgs, "b c h w -> b h w c")[..., :3]
|
229 |
+
input_Ks = torch.cat(new_input_Ks, 0)
|
230 |
+
return (
|
231 |
+
{
|
232 |
+
"input_imgs": input_imgs,
|
233 |
+
"input_Ks": input_Ks,
|
234 |
+
"input_c2ws": input_c2ws,
|
235 |
+
"input_wh": (input_imgs.shape[2], input_imgs.shape[1]),
|
236 |
+
"points": points,
|
237 |
+
"point_colors": point_colors,
|
238 |
+
"scene_scale": scene_scale,
|
239 |
+
},
|
240 |
+
gr.update(visible=False),
|
241 |
+
gr.update()
|
242 |
+
if num_inputs <= 10
|
243 |
+
else gr.update(choices=["interp"], value="interp"),
|
244 |
+
)
|
245 |
+
|
246 |
+
def visualize_scene(self, preprocessed: dict):
|
247 |
+
server = self.server
|
248 |
+
server.scene.reset()
|
249 |
+
server.gui.reset()
|
250 |
+
set_bkgd_color(server)
|
251 |
+
|
252 |
+
(
|
253 |
+
input_imgs,
|
254 |
+
input_Ks,
|
255 |
+
input_c2ws,
|
256 |
+
input_wh,
|
257 |
+
points,
|
258 |
+
point_colors,
|
259 |
+
scene_scale,
|
260 |
+
) = (
|
261 |
+
preprocessed["input_imgs"],
|
262 |
+
preprocessed["input_Ks"],
|
263 |
+
preprocessed["input_c2ws"],
|
264 |
+
preprocessed["input_wh"],
|
265 |
+
preprocessed["points"],
|
266 |
+
preprocessed["point_colors"],
|
267 |
+
preprocessed["scene_scale"],
|
268 |
+
)
|
269 |
+
W, H = input_wh
|
270 |
+
|
271 |
+
server.scene.set_up_direction(-input_c2ws[..., :3, 1].mean(0).numpy())
|
272 |
+
|
273 |
+
# Use first image as default fov.
|
274 |
+
assert input_imgs[0].shape[:2] == (H, W)
|
275 |
+
if H > W:
|
276 |
+
init_fov = 2 * np.arctan(1 / (2 * input_Ks[0, 0, 0].item()))
|
277 |
+
else:
|
278 |
+
init_fov = 2 * np.arctan(1 / (2 * input_Ks[0, 1, 1].item()))
|
279 |
+
init_fov_deg = float(init_fov / np.pi * 180.0)
|
280 |
+
|
281 |
+
frustum_nodes, pcd_nodes = [], []
|
282 |
+
for i in range(len(input_imgs)):
|
283 |
+
K = input_Ks[i]
|
284 |
+
frustum = server.scene.add_camera_frustum(
|
285 |
+
f"/scene_assets/cameras/{i}",
|
286 |
+
fov=2 * np.arctan(1 / (2 * K[1, 1].item())),
|
287 |
+
aspect=W / H,
|
288 |
+
scale=0.1 * scene_scale,
|
289 |
+
image=(input_imgs[i].numpy() * 255.0).astype(np.uint8),
|
290 |
+
wxyz=vt.SO3.from_matrix(input_c2ws[i, :3, :3].numpy()).wxyz,
|
291 |
+
position=input_c2ws[i, :3, 3].numpy(),
|
292 |
+
)
|
293 |
+
|
294 |
+
def get_handler(frustum):
|
295 |
+
def handler(event: viser.GuiEvent) -> None:
|
296 |
+
assert event.client_id is not None
|
297 |
+
client = server.get_clients()[event.client_id]
|
298 |
+
with client.atomic():
|
299 |
+
client.camera.position = frustum.position
|
300 |
+
client.camera.wxyz = frustum.wxyz
|
301 |
+
# Set look_at as the projected origin onto the
|
302 |
+
# frustum's forward direction.
|
303 |
+
look_direction = vt.SO3(frustum.wxyz).as_matrix()[:, 2]
|
304 |
+
position_origin = -frustum.position
|
305 |
+
client.camera.look_at = (
|
306 |
+
frustum.position
|
307 |
+
+ np.dot(look_direction, position_origin)
|
308 |
+
/ np.linalg.norm(position_origin)
|
309 |
+
* look_direction
|
310 |
+
)
|
311 |
+
|
312 |
+
return handler
|
313 |
+
|
314 |
+
frustum.on_click(get_handler(frustum)) # type: ignore
|
315 |
+
frustum_nodes.append(frustum)
|
316 |
+
|
317 |
+
pcd = server.scene.add_point_cloud(
|
318 |
+
f"/scene_assets/points/{i}",
|
319 |
+
points[i],
|
320 |
+
point_colors[i],
|
321 |
+
point_size=0.01 * scene_scale,
|
322 |
+
point_shape="circle",
|
323 |
+
)
|
324 |
+
pcd_nodes.append(pcd)
|
325 |
+
|
326 |
+
with server.gui.add_folder("Scene scale", expand_by_default=False, order=200):
|
327 |
+
camera_scale_slider = server.gui.add_slider(
|
328 |
+
"Log camera scale", initial_value=0.0, min=-2.0, max=2.0, step=0.1
|
329 |
+
)
|
330 |
+
|
331 |
+
@camera_scale_slider.on_update
|
332 |
+
def _(_) -> None:
|
333 |
+
for i in range(len(frustum_nodes)):
|
334 |
+
frustum_nodes[i].scale = (
|
335 |
+
0.1 * scene_scale * 10**camera_scale_slider.value
|
336 |
+
)
|
337 |
+
|
338 |
+
point_scale_slider = server.gui.add_slider(
|
339 |
+
"Log point scale", initial_value=0.0, min=-2.0, max=2.0, step=0.1
|
340 |
+
)
|
341 |
+
|
342 |
+
@point_scale_slider.on_update
|
343 |
+
def _(_) -> None:
|
344 |
+
for i in range(len(pcd_nodes)):
|
345 |
+
pcd_nodes[i].point_size = (
|
346 |
+
0.01 * scene_scale * 10**point_scale_slider.value
|
347 |
+
)
|
348 |
+
|
349 |
+
self.gui_state = define_gui(
|
350 |
+
server,
|
351 |
+
init_fov=init_fov_deg,
|
352 |
+
img_wh=input_wh,
|
353 |
+
scene_scale=scene_scale,
|
354 |
+
)
|
355 |
+
|
356 |
+
def get_target_c2ws_and_Ks_from_gui(self, preprocessed: dict):
|
357 |
+
input_wh = preprocessed["input_wh"]
|
358 |
+
W, H = input_wh
|
359 |
+
gui_state = self.gui_state
|
360 |
+
assert gui_state is not None and gui_state.camera_traj_list is not None
|
361 |
+
target_c2ws, target_Ks = [], []
|
362 |
+
for item in gui_state.camera_traj_list:
|
363 |
+
target_c2ws.append(item["w2c"])
|
364 |
+
assert item["img_wh"] == input_wh
|
365 |
+
K = np.array(item["K"]).reshape(3, 3) / np.array([W, H, 1])[:, None]
|
366 |
+
target_Ks.append(K)
|
367 |
+
target_c2ws = torch.as_tensor(
|
368 |
+
np.linalg.inv(np.array(target_c2ws).reshape(-1, 4, 4))
|
369 |
+
)
|
370 |
+
target_Ks = torch.as_tensor(np.array(target_Ks).reshape(-1, 3, 3))
|
371 |
+
return target_c2ws, target_Ks
|
372 |
+
|
373 |
+
def get_target_c2ws_and_Ks_from_preset(
|
374 |
+
self,
|
375 |
+
preprocessed: dict,
|
376 |
+
preset_traj: Literal[
|
377 |
+
"orbit",
|
378 |
+
"spiral",
|
379 |
+
"lemniscate",
|
380 |
+
"zoom-in",
|
381 |
+
"zoom-out",
|
382 |
+
"dolly zoom-in",
|
383 |
+
"dolly zoom-out",
|
384 |
+
"move-forward",
|
385 |
+
"move-backward",
|
386 |
+
"move-up",
|
387 |
+
"move-down",
|
388 |
+
"move-left",
|
389 |
+
"move-right",
|
390 |
+
],
|
391 |
+
num_frames: int,
|
392 |
+
zoom_factor: float | None,
|
393 |
+
):
|
394 |
+
img_wh = preprocessed["input_wh"]
|
395 |
+
start_c2w = preprocessed["input_c2ws"][0]
|
396 |
+
start_w2c = torch.linalg.inv(start_c2w)
|
397 |
+
look_at = torch.tensor([0, 0, 10])
|
398 |
+
start_fov = DEFAULT_FOV_RAD
|
399 |
+
target_c2ws, target_fovs = get_preset_pose_fov(
|
400 |
+
preset_traj,
|
401 |
+
num_frames,
|
402 |
+
start_w2c,
|
403 |
+
look_at,
|
404 |
+
-start_c2w[:3, 1],
|
405 |
+
start_fov,
|
406 |
+
spiral_radii=[1.0, 1.0, 0.5],
|
407 |
+
zoom_factor=zoom_factor,
|
408 |
+
)
|
409 |
+
target_c2ws = torch.as_tensor(target_c2ws)
|
410 |
+
target_fovs = torch.as_tensor(target_fovs)
|
411 |
+
target_Ks = get_default_intrinsics(
|
412 |
+
target_fovs, # type: ignore
|
413 |
+
aspect_ratio=img_wh[0] / img_wh[1],
|
414 |
+
)
|
415 |
+
return target_c2ws, target_Ks
|
416 |
+
|
417 |
+
def export_output_data(self, preprocessed: dict, output_dir: str):
|
418 |
+
input_imgs, input_Ks, input_c2ws, input_wh = (
|
419 |
+
preprocessed["input_imgs"],
|
420 |
+
preprocessed["input_Ks"],
|
421 |
+
preprocessed["input_c2ws"],
|
422 |
+
preprocessed["input_wh"],
|
423 |
+
)
|
424 |
+
target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_gui(preprocessed)
|
425 |
+
|
426 |
+
num_inputs = len(input_imgs)
|
427 |
+
num_targets = len(target_c2ws)
|
428 |
+
|
429 |
+
input_imgs = (input_imgs.cpu().numpy() * 255.0).astype(np.uint8)
|
430 |
+
input_c2ws = input_c2ws.cpu().numpy()
|
431 |
+
input_Ks = input_Ks.cpu().numpy()
|
432 |
+
target_c2ws = target_c2ws.cpu().numpy()
|
433 |
+
target_Ks = target_Ks.cpu().numpy()
|
434 |
+
img_whs = np.array(input_wh)[None].repeat(len(input_imgs) + len(target_Ks), 0)
|
435 |
+
|
436 |
+
os.makedirs(output_dir, exist_ok=True)
|
437 |
+
img_paths = []
|
438 |
+
for i, img in enumerate(input_imgs):
|
439 |
+
iio.imwrite(img_path := osp.join(output_dir, f"{i:03d}.png"), img)
|
440 |
+
img_paths.append(img_path)
|
441 |
+
for i in range(num_targets):
|
442 |
+
iio.imwrite(
|
443 |
+
img_path := osp.join(output_dir, f"{i + num_inputs:03d}.png"),
|
444 |
+
np.zeros((input_wh[1], input_wh[0], 3), dtype=np.uint8),
|
445 |
+
)
|
446 |
+
img_paths.append(img_path)
|
447 |
+
|
448 |
+
# Convert from OpenCV to OpenGL camera format.
|
449 |
+
all_c2ws = np.concatenate([input_c2ws, target_c2ws])
|
450 |
+
all_Ks = np.concatenate([input_Ks, target_Ks])
|
451 |
+
all_c2ws = all_c2ws @ np.diag([1, -1, -1, 1])
|
452 |
+
create_transforms_simple(output_dir, img_paths, img_whs, all_c2ws, all_Ks)
|
453 |
+
split_dict = {
|
454 |
+
"train_ids": list(range(num_inputs)),
|
455 |
+
"test_ids": list(range(num_inputs, num_inputs + num_targets)),
|
456 |
+
}
|
457 |
+
with open(
|
458 |
+
osp.join(output_dir, f"train_test_split_{num_inputs}.json"), "w"
|
459 |
+
) as f:
|
460 |
+
json.dump(split_dict, f, indent=4)
|
461 |
+
gr.Info(f"Output data saved to {output_dir}", duration=1)
|
462 |
+
|
463 |
+
def render(
|
464 |
+
self,
|
465 |
+
preprocessed: dict,
|
466 |
+
session_hash: str,
|
467 |
+
seed: int,
|
468 |
+
chunk_strategy: str,
|
469 |
+
cfg: float,
|
470 |
+
preset_traj: Literal[
|
471 |
+
"orbit",
|
472 |
+
"spiral",
|
473 |
+
"lemniscate",
|
474 |
+
"zoom-in",
|
475 |
+
"zoom-out",
|
476 |
+
"dolly zoom-in",
|
477 |
+
"dolly zoom-out",
|
478 |
+
"move-forward",
|
479 |
+
"move-backward",
|
480 |
+
"move-up",
|
481 |
+
"move-down",
|
482 |
+
"move-left",
|
483 |
+
"move-right",
|
484 |
+
]
|
485 |
+
| None,
|
486 |
+
num_frames: int | None,
|
487 |
+
zoom_factor: float | None,
|
488 |
+
camera_scale: float,
|
489 |
+
):
|
490 |
+
render_name = datetime.now().strftime("%Y%m%d_%H%M%S")
|
491 |
+
render_dir = osp.join(WORK_DIR, render_name)
|
492 |
+
|
493 |
+
input_imgs, input_Ks, input_c2ws, (W, H) = (
|
494 |
+
preprocessed["input_imgs"],
|
495 |
+
preprocessed["input_Ks"],
|
496 |
+
preprocessed["input_c2ws"],
|
497 |
+
preprocessed["input_wh"],
|
498 |
+
)
|
499 |
+
num_inputs = len(input_imgs)
|
500 |
+
if preset_traj is None:
|
501 |
+
target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_gui(preprocessed)
|
502 |
+
else:
|
503 |
+
assert num_frames is not None
|
504 |
+
assert num_inputs == 1
|
505 |
+
input_c2ws = torch.eye(4)[None].to(dtype=input_c2ws.dtype)
|
506 |
+
target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_preset(
|
507 |
+
preprocessed, preset_traj, num_frames, zoom_factor
|
508 |
+
)
|
509 |
+
all_c2ws = torch.cat([input_c2ws, target_c2ws], 0)
|
510 |
+
all_Ks = (
|
511 |
+
torch.cat([input_Ks, target_Ks], 0)
|
512 |
+
* input_Ks.new_tensor([W, H, 1])[:, None]
|
513 |
+
)
|
514 |
+
num_targets = len(target_c2ws)
|
515 |
+
input_indices = list(range(num_inputs))
|
516 |
+
target_indices = np.arange(num_inputs, num_inputs + num_targets).tolist()
|
517 |
+
# Get anchor cameras.
|
518 |
+
T = VERSION_DICT["T"]
|
519 |
+
version_dict = copy.deepcopy(VERSION_DICT)
|
520 |
+
num_anchors = infer_prior_stats(
|
521 |
+
T,
|
522 |
+
num_inputs,
|
523 |
+
num_total_frames=num_targets,
|
524 |
+
version_dict=version_dict,
|
525 |
+
)
|
526 |
+
# infer_prior_stats modifies T in-place.
|
527 |
+
T = version_dict["T"]
|
528 |
+
assert isinstance(num_anchors, int)
|
529 |
+
anchor_indices = np.linspace(
|
530 |
+
num_inputs,
|
531 |
+
num_inputs + num_targets - 1,
|
532 |
+
num_anchors,
|
533 |
+
).tolist()
|
534 |
+
anchor_c2ws = all_c2ws[[round(ind) for ind in anchor_indices]]
|
535 |
+
anchor_Ks = all_Ks[[round(ind) for ind in anchor_indices]]
|
536 |
+
# Create image conditioning.
|
537 |
+
all_imgs_np = (
|
538 |
+
F.pad(input_imgs, (0, 0, 0, 0, 0, 0, 0, num_targets), value=0.0).numpy()
|
539 |
+
* 255.0
|
540 |
+
).astype(np.uint8)
|
541 |
+
image_cond = {
|
542 |
+
"img": all_imgs_np,
|
543 |
+
"input_indices": input_indices,
|
544 |
+
"prior_indices": anchor_indices,
|
545 |
+
}
|
546 |
+
# Create camera conditioning (K is unnormalized).
|
547 |
+
camera_cond = {
|
548 |
+
"c2w": all_c2ws,
|
549 |
+
"K": all_Ks,
|
550 |
+
"input_indices": list(range(num_inputs + num_targets)),
|
551 |
+
}
|
552 |
+
# Run rendering.
|
553 |
+
num_steps = 50
|
554 |
+
options_ori = VERSION_DICT["options"]
|
555 |
+
options = copy.deepcopy(options_ori)
|
556 |
+
options["chunk_strategy"] = chunk_strategy
|
557 |
+
options["video_save_fps"] = 30.0
|
558 |
+
options["beta_linear_start"] = 5e-6
|
559 |
+
options["log_snr_shift"] = 2.4
|
560 |
+
options["guider_types"] = [1, 2]
|
561 |
+
options["cfg"] = [
|
562 |
+
float(cfg),
|
563 |
+
3.0 if num_inputs >= 9 else 2.0,
|
564 |
+
] # We define semi-dense-view regime to have 9 input views.
|
565 |
+
options["camera_scale"] = camera_scale
|
566 |
+
options["num_steps"] = num_steps
|
567 |
+
options["cfg_min"] = 1.2
|
568 |
+
options["encoding_t"] = 1
|
569 |
+
options["decoding_t"] = 1
|
570 |
+
assert session_hash in ABORT_EVENTS
|
571 |
+
abort_event = ABORT_EVENTS[session_hash]
|
572 |
+
abort_event.clear()
|
573 |
+
options["abort_event"] = abort_event
|
574 |
+
task = "img2trajvid"
|
575 |
+
# Get number of first pass chunks.
|
576 |
+
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
|
577 |
+
chunk_strategy_first_pass = options.get(
|
578 |
+
"chunk_strategy_first_pass", "gt-nearest"
|
579 |
+
)
|
580 |
+
num_chunks_0 = len(
|
581 |
+
chunk_input_and_test(
|
582 |
+
T_first_pass,
|
583 |
+
input_c2ws,
|
584 |
+
anchor_c2ws,
|
585 |
+
input_indices,
|
586 |
+
image_cond["prior_indices"],
|
587 |
+
options={**options, "sampler_verbose": False},
|
588 |
+
task=task,
|
589 |
+
chunk_strategy=chunk_strategy_first_pass,
|
590 |
+
gt_input_inds=list(range(input_c2ws.shape[0])),
|
591 |
+
)[1]
|
592 |
+
)
|
593 |
+
# Get number of second pass chunks.
|
594 |
+
anchor_argsort = np.argsort(input_indices + anchor_indices).tolist()
|
595 |
+
anchor_indices = np.array(input_indices + anchor_indices)[
|
596 |
+
anchor_argsort
|
597 |
+
].tolist()
|
598 |
+
gt_input_inds = [anchor_argsort.index(i) for i in range(input_c2ws.shape[0])]
|
599 |
+
anchor_c2ws_second_pass = torch.cat([input_c2ws, anchor_c2ws], dim=0)[
|
600 |
+
anchor_argsort
|
601 |
+
]
|
602 |
+
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
|
603 |
+
chunk_strategy = options.get("chunk_strategy", "nearest")
|
604 |
+
num_chunks_1 = len(
|
605 |
+
chunk_input_and_test(
|
606 |
+
T_second_pass,
|
607 |
+
anchor_c2ws_second_pass,
|
608 |
+
target_c2ws,
|
609 |
+
anchor_indices,
|
610 |
+
target_indices,
|
611 |
+
options={**options, "sampler_verbose": False},
|
612 |
+
task=task,
|
613 |
+
chunk_strategy=chunk_strategy,
|
614 |
+
gt_input_inds=gt_input_inds,
|
615 |
+
)[1]
|
616 |
+
)
|
617 |
+
second_pass_pbar = gr.Progress().tqdm(
|
618 |
+
iterable=None,
|
619 |
+
desc="Second pass sampling",
|
620 |
+
total=num_chunks_1 * num_steps,
|
621 |
+
)
|
622 |
+
first_pass_pbar = gr.Progress().tqdm(
|
623 |
+
iterable=None,
|
624 |
+
desc="First pass sampling",
|
625 |
+
total=num_chunks_0 * num_steps,
|
626 |
+
)
|
627 |
+
video_path_generator = run_one_scene(
|
628 |
+
task=task,
|
629 |
+
version_dict={
|
630 |
+
"H": H,
|
631 |
+
"W": W,
|
632 |
+
"T": T,
|
633 |
+
"C": VERSION_DICT["C"],
|
634 |
+
"f": VERSION_DICT["f"],
|
635 |
+
"options": options,
|
636 |
+
},
|
637 |
+
model=MODEL,
|
638 |
+
ae=AE,
|
639 |
+
conditioner=CONDITIONER,
|
640 |
+
denoiser=DENOISER,
|
641 |
+
image_cond=image_cond,
|
642 |
+
camera_cond=camera_cond,
|
643 |
+
save_path=render_dir,
|
644 |
+
use_traj_prior=True,
|
645 |
+
traj_prior_c2ws=anchor_c2ws,
|
646 |
+
traj_prior_Ks=anchor_Ks,
|
647 |
+
seed=seed,
|
648 |
+
gradio=True,
|
649 |
+
first_pass_pbar=first_pass_pbar,
|
650 |
+
second_pass_pbar=second_pass_pbar,
|
651 |
+
abort_event=abort_event,
|
652 |
+
)
|
653 |
+
output_queue = queue.Queue()
|
654 |
+
|
655 |
+
blocks = LocalContext.blocks.get()
|
656 |
+
event_id = LocalContext.event_id.get()
|
657 |
+
|
658 |
+
def worker():
|
659 |
+
# gradio doesn't support threading with progress intentionally, so
|
660 |
+
# we need to hack this.
|
661 |
+
LocalContext.blocks.set(blocks)
|
662 |
+
LocalContext.event_id.set(event_id)
|
663 |
+
for i, video_path in enumerate(video_path_generator):
|
664 |
+
if i == 0:
|
665 |
+
output_queue.put(
|
666 |
+
(
|
667 |
+
video_path,
|
668 |
+
gr.update(),
|
669 |
+
gr.update(),
|
670 |
+
gr.update(),
|
671 |
+
)
|
672 |
+
)
|
673 |
+
elif i == 1:
|
674 |
+
output_queue.put(
|
675 |
+
(
|
676 |
+
video_path,
|
677 |
+
gr.update(visible=True),
|
678 |
+
gr.update(visible=False),
|
679 |
+
gr.update(visible=False),
|
680 |
+
)
|
681 |
+
)
|
682 |
+
else:
|
683 |
+
gr.Error("More than two passes during rendering.")
|
684 |
+
|
685 |
+
thread = threading.Thread(target=worker, daemon=True)
|
686 |
+
thread.start()
|
687 |
+
|
688 |
+
while thread.is_alive() or not output_queue.empty():
|
689 |
+
if abort_event.is_set():
|
690 |
+
thread.join()
|
691 |
+
abort_event.clear()
|
692 |
+
yield (
|
693 |
+
gr.update(),
|
694 |
+
gr.update(visible=True),
|
695 |
+
gr.update(visible=False),
|
696 |
+
gr.update(visible=False),
|
697 |
+
)
|
698 |
+
time.sleep(0.1)
|
699 |
+
while not output_queue.empty():
|
700 |
+
yield output_queue.get()
|
701 |
+
|
702 |
+
|
703 |
+
# This is basically a copy of the original `networking.setup_tunnel` function,
|
704 |
+
# but it also returns the tunnel object for proper cleanup.
|
705 |
+
def setup_tunnel(
|
706 |
+
local_host: str, local_port: int, share_token: str, share_server_address: str | None
|
707 |
+
) -> tuple[str, Tunnel]:
|
708 |
+
share_server_address = (
|
709 |
+
networking.GRADIO_SHARE_SERVER_ADDRESS
|
710 |
+
if share_server_address is None
|
711 |
+
else share_server_address
|
712 |
+
)
|
713 |
+
if share_server_address is None:
|
714 |
+
try:
|
715 |
+
response = httpx.get(networking.GRADIO_API_SERVER, timeout=30)
|
716 |
+
payload = response.json()[0]
|
717 |
+
remote_host, remote_port = payload["host"], int(payload["port"])
|
718 |
+
certificate = payload["root_ca"]
|
719 |
+
Path(CERTIFICATE_PATH).parent.mkdir(parents=True, exist_ok=True)
|
720 |
+
with open(CERTIFICATE_PATH, "w") as f:
|
721 |
+
f.write(certificate)
|
722 |
+
except Exception as e:
|
723 |
+
raise RuntimeError(
|
724 |
+
"Could not get share link from Gradio API Server."
|
725 |
+
) from e
|
726 |
+
else:
|
727 |
+
remote_host, remote_port = share_server_address.split(":")
|
728 |
+
remote_port = int(remote_port)
|
729 |
+
tunnel = Tunnel(remote_host, remote_port, local_host, local_port, share_token)
|
730 |
+
address = tunnel.start_tunnel()
|
731 |
+
return address, tunnel
|
732 |
+
|
733 |
+
|
734 |
+
def set_bkgd_color(server: viser.ViserServer | viser.ClientHandle):
|
735 |
+
server.scene.set_background_image(np.array([[[39, 39, 42]]], dtype=np.uint8))
|
736 |
+
|
737 |
+
|
738 |
+
def start_server_and_abort_event(request: gr.Request):
|
739 |
+
server = viser.ViserServer()
|
740 |
+
|
741 |
+
@server.on_client_connect
|
742 |
+
def _(client: viser.ClientHandle):
|
743 |
+
# Force dark mode that blends well with gradio's dark theme.
|
744 |
+
client.gui.configure_theme(
|
745 |
+
dark_mode=True,
|
746 |
+
show_share_button=False,
|
747 |
+
control_layout="collapsible",
|
748 |
+
)
|
749 |
+
set_bkgd_color(client)
|
750 |
+
|
751 |
+
print(f"Starting server {server.get_port()}")
|
752 |
+
server_url, tunnel = setup_tunnel(
|
753 |
+
local_host=server.get_host(),
|
754 |
+
local_port=server.get_port(),
|
755 |
+
share_token=secrets.token_urlsafe(32),
|
756 |
+
share_server_address=None,
|
757 |
+
)
|
758 |
+
SERVERS[request.session_hash] = (server, tunnel)
|
759 |
+
if server_url is None:
|
760 |
+
raise gr.Error(
|
761 |
+
"Failed to get a viewport URL. Please check your network connection."
|
762 |
+
)
|
763 |
+
# Give it enough time to start.
|
764 |
+
time.sleep(1)
|
765 |
+
|
766 |
+
ABORT_EVENTS[request.session_hash] = threading.Event()
|
767 |
+
|
768 |
+
return (
|
769 |
+
SevaRenderer(server),
|
770 |
+
gr.HTML(
|
771 |
+
f'<iframe src="{server_url}" style="display: block; margin: auto; width: 100%; height: min(60vh, 600px);" frameborder="0"></iframe>',
|
772 |
+
container=True,
|
773 |
+
),
|
774 |
+
request.session_hash,
|
775 |
+
)
|
776 |
+
|
777 |
+
|
778 |
+
def stop_server_and_abort_event(request: gr.Request):
|
779 |
+
if request.session_hash in SERVERS:
|
780 |
+
print(f"Stopping server {request.session_hash}")
|
781 |
+
server, tunnel = SERVERS.pop(request.session_hash)
|
782 |
+
server.stop()
|
783 |
+
tunnel.kill()
|
784 |
+
|
785 |
+
if request.session_hash in ABORT_EVENTS:
|
786 |
+
print(f"Setting abort event {request.session_hash}")
|
787 |
+
ABORT_EVENTS[request.session_hash].set()
|
788 |
+
# Give it enough time to abort jobs.
|
789 |
+
time.sleep(5)
|
790 |
+
ABORT_EVENTS.pop(request.session_hash)
|
791 |
+
|
792 |
+
|
793 |
+
def set_abort_event(request: gr.Request):
|
794 |
+
if request.session_hash in ABORT_EVENTS:
|
795 |
+
print(f"Setting abort event {request.session_hash}")
|
796 |
+
ABORT_EVENTS[request.session_hash].set()
|
797 |
+
|
798 |
+
|
799 |
+
def get_advance_examples(selection: gr.SelectData):
|
800 |
+
index = selection.index
|
801 |
+
return (
|
802 |
+
gr.Gallery(ADVANCE_EXAMPLE_MAP[index][1], visible=True),
|
803 |
+
gr.update(visible=True),
|
804 |
+
gr.update(visible=True),
|
805 |
+
gr.Gallery(visible=False),
|
806 |
+
)
|
807 |
+
|
808 |
+
|
809 |
+
def get_preamble():
|
810 |
+
gr.Markdown("""
|
811 |
+
# Stable Virtual Camera
|
812 |
+
<span style="display: flex; flex-wrap: wrap; gap: 5px;">
|
813 |
+
<a href="https://stable-virtual-camera.github.io"><img src="https://img.shields.io/badge/%F0%9F%8F%A0%20Project%20Page-gray.svg"></a>
|
814 |
+
<a href="https://stable-virtual-camera.github.io/pdf/paper.pdf"><img src="https://img.shields.io/badge/%F0%9F%93%84%20Paper-gray.svg"></a>
|
815 |
+
<a href="https://stability.ai/news/introducing-stable-virtual-camera-multi-view-video-generation-with-3d-camera-control"><img src="https://img.shields.io/badge/%F0%9F%93%83%20Blog-Stability%20AI-orange.svg"></a>
|
816 |
+
<a href="https://huggingface.co/stabilityai/stable-virtual-camera"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange"></a>
|
817 |
+
<a href="https://huggingface.co/spaces/stabilityai/stable-virtual-camera"><img src="https://img.shields.io/badge/%F0%9F%9A%80%20Gradio%20Demo-Huggingface-orange"></a>
|
818 |
+
<a href="https://www.youtube.com/channel/UCLLlVDcS7nNenT_zzO3OPxQ"><img src="https://img.shields.io/badge/%F0%9F%8E%AC%20Video-YouTube-orange"></a>
|
819 |
+
</span>
|
820 |
+
|
821 |
+
Welcome to the demo of <strong>Stable Virtual Camera (Seva)</strong>! Given any number of input views and their cameras, this demo will allow you to generate novel views of a scene at any target camera of interest.
|
822 |
+
|
823 |
+
We provide two ways to use our demo (selected by the tab below, documented [here](https://github.com/Stability-AI/stable-virtual-camera/blob/main/docs/GR_USAGE.md)):
|
824 |
+
1. **[Basic](https://github.com/user-attachments/assets/4d965fa6-d8eb-452c-b773-6e09c88ca705)**: Given a single image, you can generate a video following one of our preset camera trajectories.
|
825 |
+
2. **[Advanced](https://github.com/user-attachments/assets/dcec1be0-bd10-441e-879c-d1c2b63091ba)**: Given any number of input images, you can generate a video following any camera trajectory of your choice by our key-frame-based interface.
|
826 |
+
|
827 |
+
> This is a research preview and comes with a few [limitations](https://stable-virtual-camera.github.io/#limitations):
|
828 |
+
> - Limited quality in certain subjects due to training data, including humans, animals, and dynamic textures.
|
829 |
+
> - Limited quality in some highly ambiguous scenes and camera trajectories, including extreme views and collision into objects.
|
830 |
+
""")
|
831 |
+
|
832 |
+
|
833 |
+
# Make sure that gradio uses dark theme.
|
834 |
+
_APP_JS = """
|
835 |
+
function refresh() {
|
836 |
+
const url = new URL(window.location);
|
837 |
+
if (url.searchParams.get('__theme') !== 'dark') {
|
838 |
+
url.searchParams.set('__theme', 'dark');
|
839 |
+
}
|
840 |
+
}
|
841 |
+
"""
|
842 |
+
|
843 |
+
|
844 |
+
def main(server_port: int | None = None, share: bool = True):
|
845 |
+
with gr.Blocks(js=_APP_JS) as app:
|
846 |
+
renderer = gr.State()
|
847 |
+
session_hash = gr.State()
|
848 |
+
_ = get_preamble()
|
849 |
+
with gr.Tabs():
|
850 |
+
with gr.Tab("Basic"):
|
851 |
+
render_btn = gr.Button("Render video", interactive=False, render=False)
|
852 |
+
with gr.Row():
|
853 |
+
with gr.Column():
|
854 |
+
with gr.Group():
|
855 |
+
preprocess_btn = gr.Button("Preprocess images")
|
856 |
+
preprocess_progress = gr.Textbox(
|
857 |
+
label="",
|
858 |
+
visible=False,
|
859 |
+
interactive=False,
|
860 |
+
)
|
861 |
+
with gr.Group():
|
862 |
+
input_imgs = gr.Image(
|
863 |
+
type="filepath",
|
864 |
+
label="Input",
|
865 |
+
height=200,
|
866 |
+
)
|
867 |
+
_ = gr.Examples(
|
868 |
+
examples=sorted(glob("assets/basic/*")),
|
869 |
+
inputs=[input_imgs],
|
870 |
+
label="Example",
|
871 |
+
)
|
872 |
+
chunk_strategy = gr.Dropdown(
|
873 |
+
["interp", "interp-gt"],
|
874 |
+
label="Chunk strategy",
|
875 |
+
render=False,
|
876 |
+
)
|
877 |
+
preprocessed = gr.State()
|
878 |
+
preprocess_btn.click(
|
879 |
+
lambda r, *args: [
|
880 |
+
*r.preprocess(*args),
|
881 |
+
gr.update(interactive=True),
|
882 |
+
],
|
883 |
+
inputs=[renderer, input_imgs],
|
884 |
+
outputs=[
|
885 |
+
preprocessed,
|
886 |
+
preprocess_progress,
|
887 |
+
chunk_strategy,
|
888 |
+
render_btn,
|
889 |
+
],
|
890 |
+
show_progress_on=[preprocess_progress],
|
891 |
+
concurrency_limit=1,
|
892 |
+
concurrency_id="gpu_queue",
|
893 |
+
)
|
894 |
+
preprocess_btn.click(
|
895 |
+
lambda: gr.update(visible=True),
|
896 |
+
outputs=[preprocess_progress],
|
897 |
+
)
|
898 |
+
with gr.Row():
|
899 |
+
preset_traj = gr.Dropdown(
|
900 |
+
choices=[
|
901 |
+
"orbit",
|
902 |
+
"spiral",
|
903 |
+
"lemniscate",
|
904 |
+
"zoom-in",
|
905 |
+
"zoom-out",
|
906 |
+
"dolly zoom-in",
|
907 |
+
"dolly zoom-out",
|
908 |
+
"move-forward",
|
909 |
+
"move-backward",
|
910 |
+
"move-up",
|
911 |
+
"move-down",
|
912 |
+
"move-left",
|
913 |
+
"move-right",
|
914 |
+
],
|
915 |
+
label="Preset trajectory",
|
916 |
+
value="orbit",
|
917 |
+
)
|
918 |
+
num_frames = gr.Slider(30, 150, 80, label="#Frames")
|
919 |
+
zoom_factor = gr.Slider(
|
920 |
+
step=0.01, label="Zoom factor", visible=False
|
921 |
+
)
|
922 |
+
with gr.Row():
|
923 |
+
seed = gr.Number(value=23, label="Random seed")
|
924 |
+
chunk_strategy.render()
|
925 |
+
cfg = gr.Slider(1.0, 7.0, value=4.0, label="CFG value")
|
926 |
+
with gr.Row():
|
927 |
+
camera_scale = gr.Slider(
|
928 |
+
0.1,
|
929 |
+
15.0,
|
930 |
+
value=2.0,
|
931 |
+
label="Camera scale",
|
932 |
+
)
|
933 |
+
|
934 |
+
def default_cfg_preset_traj(traj):
|
935 |
+
# These are just some hand-tuned values that we
|
936 |
+
# found work the best.
|
937 |
+
if traj in ["zoom-out", "move-down"]:
|
938 |
+
value = 5.0
|
939 |
+
elif traj in [
|
940 |
+
"orbit",
|
941 |
+
"dolly zoom-out",
|
942 |
+
"move-backward",
|
943 |
+
"move-up",
|
944 |
+
"move-left",
|
945 |
+
"move-right",
|
946 |
+
]:
|
947 |
+
value = 4.0
|
948 |
+
else:
|
949 |
+
value = 3.0
|
950 |
+
return value
|
951 |
+
|
952 |
+
preset_traj.change(
|
953 |
+
default_cfg_preset_traj,
|
954 |
+
inputs=[preset_traj],
|
955 |
+
outputs=[cfg],
|
956 |
+
)
|
957 |
+
preset_traj.change(
|
958 |
+
lambda traj: gr.update(
|
959 |
+
value=(
|
960 |
+
10.0 if "dolly" in traj or "pan" in traj else 2.0
|
961 |
+
)
|
962 |
+
),
|
963 |
+
inputs=[preset_traj],
|
964 |
+
outputs=[camera_scale],
|
965 |
+
)
|
966 |
+
|
967 |
+
def zoom_factor_preset_traj(traj):
|
968 |
+
visible = traj in [
|
969 |
+
"zoom-in",
|
970 |
+
"zoom-out",
|
971 |
+
"dolly zoom-in",
|
972 |
+
"dolly zoom-out",
|
973 |
+
]
|
974 |
+
is_zoomin = traj.endswith("zoom-in")
|
975 |
+
if is_zoomin:
|
976 |
+
minimum = 0.1
|
977 |
+
maximum = 0.5
|
978 |
+
value = 0.28
|
979 |
+
else:
|
980 |
+
minimum = 1.2
|
981 |
+
maximum = 3
|
982 |
+
value = 1.5
|
983 |
+
return gr.update(
|
984 |
+
visible=visible,
|
985 |
+
minimum=minimum,
|
986 |
+
maximum=maximum,
|
987 |
+
value=value,
|
988 |
+
)
|
989 |
+
|
990 |
+
preset_traj.change(
|
991 |
+
zoom_factor_preset_traj,
|
992 |
+
inputs=[preset_traj],
|
993 |
+
outputs=[zoom_factor],
|
994 |
+
)
|
995 |
+
with gr.Column():
|
996 |
+
with gr.Group():
|
997 |
+
abort_btn = gr.Button("Abort rendering", visible=False)
|
998 |
+
render_btn.render()
|
999 |
+
render_progress = gr.Textbox(
|
1000 |
+
label="", visible=False, interactive=False
|
1001 |
+
)
|
1002 |
+
output_video = gr.Video(
|
1003 |
+
label="Output", interactive=False, autoplay=True, loop=True
|
1004 |
+
)
|
1005 |
+
render_btn.click(
|
1006 |
+
lambda r, *args: (yield from r.render(*args)),
|
1007 |
+
inputs=[
|
1008 |
+
renderer,
|
1009 |
+
preprocessed,
|
1010 |
+
session_hash,
|
1011 |
+
seed,
|
1012 |
+
chunk_strategy,
|
1013 |
+
cfg,
|
1014 |
+
preset_traj,
|
1015 |
+
num_frames,
|
1016 |
+
zoom_factor,
|
1017 |
+
camera_scale,
|
1018 |
+
],
|
1019 |
+
outputs=[
|
1020 |
+
output_video,
|
1021 |
+
render_btn,
|
1022 |
+
abort_btn,
|
1023 |
+
render_progress,
|
1024 |
+
],
|
1025 |
+
show_progress_on=[render_progress],
|
1026 |
+
concurrency_id="gpu_queue",
|
1027 |
+
)
|
1028 |
+
render_btn.click(
|
1029 |
+
lambda: [
|
1030 |
+
gr.update(visible=False),
|
1031 |
+
gr.update(visible=True),
|
1032 |
+
gr.update(visible=True),
|
1033 |
+
],
|
1034 |
+
outputs=[render_btn, abort_btn, render_progress],
|
1035 |
+
)
|
1036 |
+
abort_btn.click(set_abort_event)
|
1037 |
+
with gr.Tab("Advanced"):
|
1038 |
+
render_btn = gr.Button("Render video", interactive=False, render=False)
|
1039 |
+
viewport = gr.HTML(container=True, render=False)
|
1040 |
+
gr.Timer(0.1).tick(
|
1041 |
+
lambda renderer: gr.update(
|
1042 |
+
interactive=renderer is not None
|
1043 |
+
and renderer.gui_state is not None
|
1044 |
+
and renderer.gui_state.camera_traj_list is not None
|
1045 |
+
),
|
1046 |
+
inputs=[renderer],
|
1047 |
+
outputs=[render_btn],
|
1048 |
+
)
|
1049 |
+
with gr.Row():
|
1050 |
+
viewport.render()
|
1051 |
+
with gr.Row():
|
1052 |
+
with gr.Column():
|
1053 |
+
with gr.Group():
|
1054 |
+
preprocess_btn = gr.Button("Preprocess images")
|
1055 |
+
preprocess_progress = gr.Textbox(
|
1056 |
+
label="",
|
1057 |
+
visible=False,
|
1058 |
+
interactive=False,
|
1059 |
+
)
|
1060 |
+
with gr.Group():
|
1061 |
+
input_imgs = gr.Gallery(
|
1062 |
+
interactive=True,
|
1063 |
+
label="Input",
|
1064 |
+
columns=4,
|
1065 |
+
height=200,
|
1066 |
+
)
|
1067 |
+
# Define example images (gradio doesn't support variable length
|
1068 |
+
# examples so we need to hack it).
|
1069 |
+
example_imgs = gr.Gallery(
|
1070 |
+
[e[0] for e in ADVANCE_EXAMPLE_MAP],
|
1071 |
+
allow_preview=False,
|
1072 |
+
preview=False,
|
1073 |
+
label="Example",
|
1074 |
+
columns=20,
|
1075 |
+
rows=1,
|
1076 |
+
height=115,
|
1077 |
+
)
|
1078 |
+
example_imgs_expander = gr.Gallery(
|
1079 |
+
visible=False,
|
1080 |
+
interactive=False,
|
1081 |
+
label="Example",
|
1082 |
+
preview=True,
|
1083 |
+
columns=20,
|
1084 |
+
rows=1,
|
1085 |
+
)
|
1086 |
+
chunk_strategy = gr.Dropdown(
|
1087 |
+
["interp-gt", "interp"],
|
1088 |
+
label="Chunk strategy",
|
1089 |
+
value="interp-gt",
|
1090 |
+
render=False,
|
1091 |
+
)
|
1092 |
+
with gr.Row():
|
1093 |
+
example_imgs_backer = gr.Button(
|
1094 |
+
"Go back", visible=False
|
1095 |
+
)
|
1096 |
+
example_imgs_confirmer = gr.Button(
|
1097 |
+
"Confirm", visible=False
|
1098 |
+
)
|
1099 |
+
example_imgs.select(
|
1100 |
+
get_advance_examples,
|
1101 |
+
outputs=[
|
1102 |
+
example_imgs_expander,
|
1103 |
+
example_imgs_confirmer,
|
1104 |
+
example_imgs_backer,
|
1105 |
+
example_imgs,
|
1106 |
+
],
|
1107 |
+
)
|
1108 |
+
example_imgs_confirmer.click(
|
1109 |
+
lambda x: (
|
1110 |
+
x,
|
1111 |
+
gr.update(visible=False),
|
1112 |
+
gr.update(visible=False),
|
1113 |
+
gr.update(visible=False),
|
1114 |
+
gr.update(visible=True),
|
1115 |
+
),
|
1116 |
+
inputs=[example_imgs_expander],
|
1117 |
+
outputs=[
|
1118 |
+
input_imgs,
|
1119 |
+
example_imgs_expander,
|
1120 |
+
example_imgs_confirmer,
|
1121 |
+
example_imgs_backer,
|
1122 |
+
example_imgs,
|
1123 |
+
],
|
1124 |
+
)
|
1125 |
+
example_imgs_backer.click(
|
1126 |
+
lambda: (
|
1127 |
+
gr.update(visible=False),
|
1128 |
+
gr.update(visible=False),
|
1129 |
+
gr.update(visible=False),
|
1130 |
+
gr.update(visible=True),
|
1131 |
+
),
|
1132 |
+
outputs=[
|
1133 |
+
example_imgs_expander,
|
1134 |
+
example_imgs_confirmer,
|
1135 |
+
example_imgs_backer,
|
1136 |
+
example_imgs,
|
1137 |
+
],
|
1138 |
+
)
|
1139 |
+
preprocessed = gr.State()
|
1140 |
+
preprocess_btn.click(
|
1141 |
+
lambda r, *args: r.preprocess(*args),
|
1142 |
+
inputs=[renderer, input_imgs],
|
1143 |
+
outputs=[
|
1144 |
+
preprocessed,
|
1145 |
+
preprocess_progress,
|
1146 |
+
chunk_strategy,
|
1147 |
+
],
|
1148 |
+
show_progress_on=[preprocess_progress],
|
1149 |
+
concurrency_id="gpu_queue",
|
1150 |
+
)
|
1151 |
+
preprocess_btn.click(
|
1152 |
+
lambda: gr.update(visible=True),
|
1153 |
+
outputs=[preprocess_progress],
|
1154 |
+
)
|
1155 |
+
preprocessed.change(
|
1156 |
+
lambda r, *args: r.visualize_scene(*args),
|
1157 |
+
inputs=[renderer, preprocessed],
|
1158 |
+
)
|
1159 |
+
with gr.Row():
|
1160 |
+
seed = gr.Number(value=23, label="Random seed")
|
1161 |
+
chunk_strategy.render()
|
1162 |
+
cfg = gr.Slider(1.0, 7.0, value=3.0, label="CFG value")
|
1163 |
+
with gr.Row():
|
1164 |
+
camera_scale = gr.Slider(
|
1165 |
+
0.1,
|
1166 |
+
15.0,
|
1167 |
+
value=2.0,
|
1168 |
+
label="Camera scale (useful for single-view input)",
|
1169 |
+
)
|
1170 |
+
with gr.Group():
|
1171 |
+
output_data_dir = gr.Textbox(label="Output data directory")
|
1172 |
+
output_data_btn = gr.Button("Export output data")
|
1173 |
+
output_data_btn.click(
|
1174 |
+
lambda r, *args: r.export_output_data(*args),
|
1175 |
+
inputs=[renderer, preprocessed, output_data_dir],
|
1176 |
+
)
|
1177 |
+
with gr.Column():
|
1178 |
+
with gr.Group():
|
1179 |
+
abort_btn = gr.Button("Abort rendering", visible=False)
|
1180 |
+
render_btn.render()
|
1181 |
+
render_progress = gr.Textbox(
|
1182 |
+
label="", visible=False, interactive=False
|
1183 |
+
)
|
1184 |
+
output_video = gr.Video(
|
1185 |
+
label="Output", interactive=False, autoplay=True, loop=True
|
1186 |
+
)
|
1187 |
+
render_btn.click(
|
1188 |
+
lambda r, *args: (yield from r.render(*args)),
|
1189 |
+
inputs=[
|
1190 |
+
renderer,
|
1191 |
+
preprocessed,
|
1192 |
+
session_hash,
|
1193 |
+
seed,
|
1194 |
+
chunk_strategy,
|
1195 |
+
cfg,
|
1196 |
+
gr.State(),
|
1197 |
+
gr.State(),
|
1198 |
+
gr.State(),
|
1199 |
+
camera_scale,
|
1200 |
+
],
|
1201 |
+
outputs=[
|
1202 |
+
output_video,
|
1203 |
+
render_btn,
|
1204 |
+
abort_btn,
|
1205 |
+
render_progress,
|
1206 |
+
],
|
1207 |
+
show_progress_on=[render_progress],
|
1208 |
+
concurrency_id="gpu_queue",
|
1209 |
+
)
|
1210 |
+
render_btn.click(
|
1211 |
+
lambda: [
|
1212 |
+
gr.update(visible=False),
|
1213 |
+
gr.update(visible=True),
|
1214 |
+
gr.update(visible=True),
|
1215 |
+
],
|
1216 |
+
outputs=[render_btn, abort_btn, render_progress],
|
1217 |
+
)
|
1218 |
+
abort_btn.click(set_abort_event)
|
1219 |
+
|
1220 |
+
# Register the session initialization and cleanup functions.
|
1221 |
+
app.load(
|
1222 |
+
start_server_and_abort_event,
|
1223 |
+
outputs=[renderer, viewport, session_hash],
|
1224 |
+
)
|
1225 |
+
app.unload(stop_server_and_abort_event)
|
1226 |
+
|
1227 |
+
app.queue(max_size=5).launch(
|
1228 |
+
share=share,
|
1229 |
+
server_port=server_port,
|
1230 |
+
show_error=True,
|
1231 |
+
allowed_paths=[WORK_DIR],
|
1232 |
+
# Badget rendering will be broken otherwise.
|
1233 |
+
ssr_mode=False,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
|
1237 |
+
if __name__ == "__main__":
|
1238 |
+
tyro.cli(main)
|
requirements.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/nightly/cu124
|
2 |
+
torch==2.7.0.dev20250218+cu124
|
3 |
+
torchvision==0.22.0.dev20250219+cu124
|
4 |
+
roma
|
5 |
+
gradio==5.17.0
|
6 |
+
matplotlib
|
7 |
+
tqdm
|
8 |
+
opencv-python
|
9 |
+
scipy
|
10 |
+
einops
|
11 |
+
trimesh
|
12 |
+
tensorboard
|
13 |
+
git+https://github.com/jensenz-sai/pycolmap@543266bc316df2fe407b3a33d454b310b1641042
|
14 |
+
pyglet<2
|
15 |
+
huggingface-hub[torch]>=0.22
|
16 |
+
pillow-heif # add heif/heic image support
|
17 |
+
pyrender # for rendering depths in scannetpp
|
18 |
+
kapture # for visloc data loading
|
19 |
+
kapture-localization
|
20 |
+
numpy==1.24.4
|
21 |
+
numpy-quaternion
|
22 |
+
pycolmap # for pnp
|
23 |
+
poselib # for pnp
|
24 |
+
viser
|
25 |
+
tyro
|
26 |
+
ninja
|
27 |
+
colorama
|
28 |
+
pytorch-lightning
|
29 |
+
splines
|
30 |
+
diffusers
|
31 |
+
kornia
|
32 |
+
open-clip-torch
|
33 |
+
accelerate
|
34 |
+
pyav
|
35 |
+
imageio[ffmpeg]
|
seva/__init__.py
ADDED
File without changes
|
seva/data_io.py
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
from glob import glob
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import imageio.v3 as iio
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from seva.geometry import (
|
13 |
+
align_principle_axes,
|
14 |
+
similarity_from_cameras,
|
15 |
+
transform_cameras,
|
16 |
+
transform_points,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def _get_rel_paths(path_dir: str) -> List[str]:
|
21 |
+
"""Recursively get relative paths of files in a directory."""
|
22 |
+
paths = []
|
23 |
+
for dp, _, fn in os.walk(path_dir):
|
24 |
+
for f in fn:
|
25 |
+
paths.append(os.path.relpath(os.path.join(dp, f), path_dir))
|
26 |
+
return paths
|
27 |
+
|
28 |
+
|
29 |
+
class BaseParser(object):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
data_dir: str,
|
33 |
+
factor: int = 1,
|
34 |
+
normalize: bool = False,
|
35 |
+
test_every: Optional[int] = 8,
|
36 |
+
):
|
37 |
+
self.data_dir = data_dir
|
38 |
+
self.factor = factor
|
39 |
+
self.normalize = normalize
|
40 |
+
self.test_every = test_every
|
41 |
+
|
42 |
+
self.image_names: List[str] = [] # (num_images,)
|
43 |
+
self.image_paths: List[str] = [] # (num_images,)
|
44 |
+
self.camtoworlds: np.ndarray = np.zeros((0, 4, 4)) # (num_images, 4, 4)
|
45 |
+
self.camera_ids: List[int] = [] # (num_images,)
|
46 |
+
self.Ks_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> K
|
47 |
+
self.params_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> params
|
48 |
+
self.imsize_dict: Dict[
|
49 |
+
int, Tuple[int, int]
|
50 |
+
] = {} # Dict of camera_id -> (width, height)
|
51 |
+
self.points: np.ndarray = np.zeros((0, 3)) # (num_points, 3)
|
52 |
+
self.points_err: np.ndarray = np.zeros((0,)) # (num_points,)
|
53 |
+
self.points_rgb: np.ndarray = np.zeros((0, 3)) # (num_points, 3)
|
54 |
+
self.point_indices: Dict[str, np.ndarray] = {} # Dict of image_name -> (M,)
|
55 |
+
self.transform: np.ndarray = np.zeros((4, 4)) # (4, 4)
|
56 |
+
|
57 |
+
self.mapx_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W)
|
58 |
+
self.mapy_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W)
|
59 |
+
self.roi_undist_dict: Dict[int, Tuple[int, int, int, int]] = (
|
60 |
+
dict()
|
61 |
+
) # Dict of camera_id -> (x, y, w, h)
|
62 |
+
self.scene_scale: float = 1.0
|
63 |
+
|
64 |
+
|
65 |
+
class DirectParser(BaseParser):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
imgs: List[np.ndarray],
|
69 |
+
c2ws: np.ndarray,
|
70 |
+
Ks: np.ndarray,
|
71 |
+
points: Optional[np.ndarray] = None,
|
72 |
+
points_rgb: Optional[np.ndarray] = None, # uint8
|
73 |
+
mono_disps: Optional[List[np.ndarray]] = None,
|
74 |
+
normalize: bool = False,
|
75 |
+
test_every: Optional[int] = None,
|
76 |
+
):
|
77 |
+
super().__init__("", 1, normalize, test_every)
|
78 |
+
|
79 |
+
self.image_names = [f"{i:06d}" for i in range(len(imgs))]
|
80 |
+
self.image_paths = ["null" for _ in range(len(imgs))]
|
81 |
+
self.camtoworlds = c2ws
|
82 |
+
self.camera_ids = [i for i in range(len(imgs))]
|
83 |
+
self.Ks_dict = {i: K for i, K in enumerate(Ks)}
|
84 |
+
self.imsize_dict = {
|
85 |
+
i: (img.shape[1], img.shape[0]) for i, img in enumerate(imgs)
|
86 |
+
}
|
87 |
+
if points is not None:
|
88 |
+
self.points = points
|
89 |
+
assert points_rgb is not None
|
90 |
+
self.points_rgb = points_rgb
|
91 |
+
self.points_err = np.zeros((len(points),))
|
92 |
+
|
93 |
+
self.imgs = imgs
|
94 |
+
self.mono_disps = mono_disps
|
95 |
+
|
96 |
+
# Normalize the world space.
|
97 |
+
if normalize:
|
98 |
+
T1 = similarity_from_cameras(self.camtoworlds)
|
99 |
+
self.camtoworlds = transform_cameras(T1, self.camtoworlds)
|
100 |
+
|
101 |
+
if points is not None:
|
102 |
+
self.points = transform_points(T1, self.points)
|
103 |
+
T2 = align_principle_axes(self.points)
|
104 |
+
self.camtoworlds = transform_cameras(T2, self.camtoworlds)
|
105 |
+
self.points = transform_points(T2, self.points)
|
106 |
+
else:
|
107 |
+
T2 = np.eye(4)
|
108 |
+
|
109 |
+
self.transform = T2 @ T1
|
110 |
+
else:
|
111 |
+
self.transform = np.eye(4)
|
112 |
+
|
113 |
+
# size of the scene measured by cameras
|
114 |
+
camera_locations = self.camtoworlds[:, :3, 3]
|
115 |
+
scene_center = np.mean(camera_locations, axis=0)
|
116 |
+
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
|
117 |
+
self.scene_scale = np.max(dists)
|
118 |
+
|
119 |
+
|
120 |
+
class COLMAPParser(BaseParser):
|
121 |
+
"""COLMAP parser."""
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
data_dir: str,
|
126 |
+
factor: int = 1,
|
127 |
+
normalize: bool = False,
|
128 |
+
test_every: Optional[int] = 8,
|
129 |
+
image_folder: str = "images",
|
130 |
+
colmap_folder: str = "sparse/0",
|
131 |
+
):
|
132 |
+
super().__init__(data_dir, factor, normalize, test_every)
|
133 |
+
|
134 |
+
colmap_dir = os.path.join(data_dir, colmap_folder)
|
135 |
+
assert os.path.exists(
|
136 |
+
colmap_dir
|
137 |
+
), f"COLMAP directory {colmap_dir} does not exist."
|
138 |
+
|
139 |
+
try:
|
140 |
+
from pycolmap import SceneManager
|
141 |
+
except ImportError:
|
142 |
+
raise ImportError(
|
143 |
+
"Please install pycolmap to use the data parsers: "
|
144 |
+
" `pip install git+https://github.com/jensenz-sai/pycolmap.git@543266bc316df2fe407b3a33d454b310b1641042`"
|
145 |
+
)
|
146 |
+
|
147 |
+
manager = SceneManager(colmap_dir)
|
148 |
+
manager.load_cameras()
|
149 |
+
manager.load_images()
|
150 |
+
manager.load_points3D()
|
151 |
+
|
152 |
+
# Extract extrinsic matrices in world-to-camera format.
|
153 |
+
imdata = manager.images
|
154 |
+
w2c_mats = []
|
155 |
+
camera_ids = []
|
156 |
+
Ks_dict = dict()
|
157 |
+
params_dict = dict()
|
158 |
+
imsize_dict = dict() # width, height
|
159 |
+
bottom = np.array([0, 0, 0, 1]).reshape(1, 4)
|
160 |
+
for k in imdata:
|
161 |
+
im = imdata[k]
|
162 |
+
rot = im.R()
|
163 |
+
trans = im.tvec.reshape(3, 1)
|
164 |
+
w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0)
|
165 |
+
w2c_mats.append(w2c)
|
166 |
+
|
167 |
+
# support different camera intrinsics
|
168 |
+
camera_id = im.camera_id
|
169 |
+
camera_ids.append(camera_id)
|
170 |
+
|
171 |
+
# camera intrinsics
|
172 |
+
cam = manager.cameras[camera_id]
|
173 |
+
fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy
|
174 |
+
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
|
175 |
+
K[:2, :] /= factor
|
176 |
+
Ks_dict[camera_id] = K
|
177 |
+
|
178 |
+
# Get distortion parameters.
|
179 |
+
type_ = cam.camera_type
|
180 |
+
if type_ == 0 or type_ == "SIMPLE_PINHOLE":
|
181 |
+
params = np.empty(0, dtype=np.float32)
|
182 |
+
camtype = "perspective"
|
183 |
+
elif type_ == 1 or type_ == "PINHOLE":
|
184 |
+
params = np.empty(0, dtype=np.float32)
|
185 |
+
camtype = "perspective"
|
186 |
+
if type_ == 2 or type_ == "SIMPLE_RADIAL":
|
187 |
+
params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32)
|
188 |
+
camtype = "perspective"
|
189 |
+
elif type_ == 3 or type_ == "RADIAL":
|
190 |
+
params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32)
|
191 |
+
camtype = "perspective"
|
192 |
+
elif type_ == 4 or type_ == "OPENCV":
|
193 |
+
params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32)
|
194 |
+
camtype = "perspective"
|
195 |
+
elif type_ == 5 or type_ == "OPENCV_FISHEYE":
|
196 |
+
params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32)
|
197 |
+
camtype = "fisheye"
|
198 |
+
assert (
|
199 |
+
camtype == "perspective" # type: ignore
|
200 |
+
), f"Only support perspective camera model, got {type_}"
|
201 |
+
|
202 |
+
params_dict[camera_id] = params # type: ignore
|
203 |
+
|
204 |
+
# image size
|
205 |
+
imsize_dict[camera_id] = (cam.width // factor, cam.height // factor)
|
206 |
+
|
207 |
+
print(
|
208 |
+
f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras."
|
209 |
+
)
|
210 |
+
|
211 |
+
if len(imdata) == 0:
|
212 |
+
raise ValueError("No images found in COLMAP.")
|
213 |
+
if not (type_ == 0 or type_ == 1): # type: ignore
|
214 |
+
print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.")
|
215 |
+
|
216 |
+
w2c_mats = np.stack(w2c_mats, axis=0)
|
217 |
+
|
218 |
+
# Convert extrinsics to camera-to-world.
|
219 |
+
camtoworlds = np.linalg.inv(w2c_mats)
|
220 |
+
|
221 |
+
# Image names from COLMAP. No need for permuting the poses according to
|
222 |
+
# image names anymore.
|
223 |
+
image_names = [imdata[k].name for k in imdata]
|
224 |
+
|
225 |
+
# Previous Nerf results were generated with images sorted by filename,
|
226 |
+
# ensure metrics are reported on the same test set.
|
227 |
+
inds = np.argsort(image_names)
|
228 |
+
image_names = [image_names[i] for i in inds]
|
229 |
+
camtoworlds = camtoworlds[inds]
|
230 |
+
camera_ids = [camera_ids[i] for i in inds]
|
231 |
+
|
232 |
+
# Load images.
|
233 |
+
if factor > 1:
|
234 |
+
image_dir_suffix = f"_{factor}"
|
235 |
+
else:
|
236 |
+
image_dir_suffix = ""
|
237 |
+
colmap_image_dir = os.path.join(data_dir, image_folder)
|
238 |
+
image_dir = os.path.join(data_dir, image_folder + image_dir_suffix)
|
239 |
+
for d in [image_dir, colmap_image_dir]:
|
240 |
+
if not os.path.exists(d):
|
241 |
+
raise ValueError(f"Image folder {d} does not exist.")
|
242 |
+
|
243 |
+
# Downsampled images may have different names vs images used for COLMAP,
|
244 |
+
# so we need to map between the two sorted lists of files.
|
245 |
+
colmap_files = sorted(_get_rel_paths(colmap_image_dir))
|
246 |
+
image_files = sorted(_get_rel_paths(image_dir))
|
247 |
+
colmap_to_image = dict(zip(colmap_files, image_files))
|
248 |
+
image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names]
|
249 |
+
|
250 |
+
# 3D points and {image_name -> [point_idx]}
|
251 |
+
points = manager.points3D.astype(np.float32) # type: ignore
|
252 |
+
points_err = manager.point3D_errors.astype(np.float32) # type: ignore
|
253 |
+
points_rgb = manager.point3D_colors.astype(np.uint8) # type: ignore
|
254 |
+
point_indices = dict()
|
255 |
+
|
256 |
+
image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()}
|
257 |
+
for point_id, data in manager.point3D_id_to_images.items():
|
258 |
+
for image_id, _ in data:
|
259 |
+
image_name = image_id_to_name[image_id]
|
260 |
+
point_idx = manager.point3D_id_to_point3D_idx[point_id]
|
261 |
+
point_indices.setdefault(image_name, []).append(point_idx)
|
262 |
+
point_indices = {
|
263 |
+
k: np.array(v).astype(np.int32) for k, v in point_indices.items()
|
264 |
+
}
|
265 |
+
|
266 |
+
# Normalize the world space.
|
267 |
+
if normalize:
|
268 |
+
T1 = similarity_from_cameras(camtoworlds)
|
269 |
+
camtoworlds = transform_cameras(T1, camtoworlds)
|
270 |
+
points = transform_points(T1, points)
|
271 |
+
|
272 |
+
T2 = align_principle_axes(points)
|
273 |
+
camtoworlds = transform_cameras(T2, camtoworlds)
|
274 |
+
points = transform_points(T2, points)
|
275 |
+
|
276 |
+
transform = T2 @ T1
|
277 |
+
else:
|
278 |
+
transform = np.eye(4)
|
279 |
+
|
280 |
+
self.image_names = image_names # List[str], (num_images,)
|
281 |
+
self.image_paths = image_paths # List[str], (num_images,)
|
282 |
+
self.camtoworlds = camtoworlds # np.ndarray, (num_images, 4, 4)
|
283 |
+
self.camera_ids = camera_ids # List[int], (num_images,)
|
284 |
+
self.Ks_dict = Ks_dict # Dict of camera_id -> K
|
285 |
+
self.params_dict = params_dict # Dict of camera_id -> params
|
286 |
+
self.imsize_dict = imsize_dict # Dict of camera_id -> (width, height)
|
287 |
+
self.points = points # np.ndarray, (num_points, 3)
|
288 |
+
self.points_err = points_err # np.ndarray, (num_points,)
|
289 |
+
self.points_rgb = points_rgb # np.ndarray, (num_points, 3)
|
290 |
+
self.point_indices = point_indices # Dict[str, np.ndarray], image_name -> [M,]
|
291 |
+
self.transform = transform # np.ndarray, (4, 4)
|
292 |
+
|
293 |
+
# undistortion
|
294 |
+
self.mapx_dict = dict()
|
295 |
+
self.mapy_dict = dict()
|
296 |
+
self.roi_undist_dict = dict()
|
297 |
+
for camera_id in self.params_dict.keys():
|
298 |
+
params = self.params_dict[camera_id]
|
299 |
+
if len(params) == 0:
|
300 |
+
continue # no distortion
|
301 |
+
assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}"
|
302 |
+
assert (
|
303 |
+
camera_id in self.params_dict
|
304 |
+
), f"Missing params for camera {camera_id}"
|
305 |
+
K = self.Ks_dict[camera_id]
|
306 |
+
width, height = self.imsize_dict[camera_id]
|
307 |
+
K_undist, roi_undist = cv2.getOptimalNewCameraMatrix(
|
308 |
+
K, params, (width, height), 0
|
309 |
+
)
|
310 |
+
mapx, mapy = cv2.initUndistortRectifyMap(
|
311 |
+
K,
|
312 |
+
params,
|
313 |
+
None,
|
314 |
+
K_undist,
|
315 |
+
(width, height),
|
316 |
+
cv2.CV_32FC1, # type: ignore
|
317 |
+
)
|
318 |
+
self.Ks_dict[camera_id] = K_undist
|
319 |
+
self.mapx_dict[camera_id] = mapx
|
320 |
+
self.mapy_dict[camera_id] = mapy
|
321 |
+
self.roi_undist_dict[camera_id] = roi_undist # type: ignore
|
322 |
+
|
323 |
+
# size of the scene measured by cameras
|
324 |
+
camera_locations = camtoworlds[:, :3, 3]
|
325 |
+
scene_center = np.mean(camera_locations, axis=0)
|
326 |
+
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
|
327 |
+
self.scene_scale = np.max(dists)
|
328 |
+
|
329 |
+
|
330 |
+
class ReconfusionParser(BaseParser):
|
331 |
+
def __init__(self, data_dir: str, normalize: bool = False):
|
332 |
+
super().__init__(data_dir, 1, normalize, test_every=None)
|
333 |
+
|
334 |
+
def get_num(p):
|
335 |
+
return p.split("_")[-1].removesuffix(".json")
|
336 |
+
|
337 |
+
splits_per_num_input_frames = {}
|
338 |
+
num_input_frames = [
|
339 |
+
int(get_num(p)) if get_num(p).isdigit() else get_num(p)
|
340 |
+
for p in sorted(glob(osp.join(data_dir, "train_test_split_*.json")))
|
341 |
+
]
|
342 |
+
for num_input_frames in num_input_frames:
|
343 |
+
with open(
|
344 |
+
osp.join(
|
345 |
+
data_dir,
|
346 |
+
f"train_test_split_{num_input_frames}.json",
|
347 |
+
)
|
348 |
+
) as f:
|
349 |
+
splits_per_num_input_frames[num_input_frames] = json.load(f)
|
350 |
+
self.splits_per_num_input_frames = splits_per_num_input_frames
|
351 |
+
|
352 |
+
with open(osp.join(data_dir, "transforms.json")) as f:
|
353 |
+
metadata = json.load(f)
|
354 |
+
|
355 |
+
image_names, image_paths, camtoworlds = [], [], []
|
356 |
+
for frame in metadata["frames"]:
|
357 |
+
if frame["file_path"] is None:
|
358 |
+
image_path = image_name = None
|
359 |
+
else:
|
360 |
+
image_path = osp.join(data_dir, frame["file_path"])
|
361 |
+
image_name = osp.basename(image_path)
|
362 |
+
image_paths.append(image_path)
|
363 |
+
image_names.append(image_name)
|
364 |
+
camtoworld = np.array(frame["transform_matrix"])
|
365 |
+
if "applied_transform" in metadata:
|
366 |
+
applied_transform = np.concatenate(
|
367 |
+
[metadata["applied_transform"], [[0, 0, 0, 1]]], axis=0
|
368 |
+
)
|
369 |
+
camtoworld = applied_transform @ camtoworld
|
370 |
+
camtoworlds.append(camtoworld)
|
371 |
+
camtoworlds = np.array(camtoworlds)
|
372 |
+
camtoworlds[:, :, [1, 2]] *= -1
|
373 |
+
|
374 |
+
# Normalize the world space.
|
375 |
+
if normalize:
|
376 |
+
T1 = similarity_from_cameras(camtoworlds)
|
377 |
+
camtoworlds = transform_cameras(T1, camtoworlds)
|
378 |
+
self.transform = T1
|
379 |
+
else:
|
380 |
+
self.transform = np.eye(4)
|
381 |
+
|
382 |
+
self.image_names = image_names
|
383 |
+
self.image_paths = image_paths
|
384 |
+
self.camtoworlds = camtoworlds
|
385 |
+
self.camera_ids = list(range(len(image_paths)))
|
386 |
+
self.Ks_dict = {
|
387 |
+
i: np.array(
|
388 |
+
[
|
389 |
+
[
|
390 |
+
metadata.get("fl_x", frame.get("fl_x", None)),
|
391 |
+
0.0,
|
392 |
+
metadata.get("cx", frame.get("cx", None)),
|
393 |
+
],
|
394 |
+
[
|
395 |
+
0.0,
|
396 |
+
metadata.get("fl_y", frame.get("fl_y", None)),
|
397 |
+
metadata.get("cy", frame.get("cy", None)),
|
398 |
+
],
|
399 |
+
[0.0, 0.0, 1.0],
|
400 |
+
]
|
401 |
+
)
|
402 |
+
for i, frame in enumerate(metadata["frames"])
|
403 |
+
}
|
404 |
+
self.imsize_dict = {
|
405 |
+
i: (
|
406 |
+
metadata.get("w", frame.get("w", None)),
|
407 |
+
metadata.get("h", frame.get("h", None)),
|
408 |
+
)
|
409 |
+
for i, frame in enumerate(metadata["frames"])
|
410 |
+
}
|
411 |
+
# When num_input_frames is None, use all frames for both training and
|
412 |
+
# testing.
|
413 |
+
# self.splits_per_num_input_frames[None] = {
|
414 |
+
# "train_ids": list(range(len(image_paths))),
|
415 |
+
# "test_ids": list(range(len(image_paths))),
|
416 |
+
# }
|
417 |
+
|
418 |
+
# size of the scene measured by cameras
|
419 |
+
camera_locations = camtoworlds[:, :3, 3]
|
420 |
+
scene_center = np.mean(camera_locations, axis=0)
|
421 |
+
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
|
422 |
+
self.scene_scale = np.max(dists)
|
423 |
+
|
424 |
+
self.bounds = None
|
425 |
+
if osp.exists(osp.join(data_dir, "bounds.npy")):
|
426 |
+
self.bounds = np.load(osp.join(data_dir, "bounds.npy"))
|
427 |
+
scaling = np.linalg.norm(self.transform[0, :3])
|
428 |
+
self.bounds = self.bounds / scaling
|
429 |
+
|
430 |
+
|
431 |
+
class Dataset(torch.utils.data.Dataset):
|
432 |
+
"""A simple dataset class."""
|
433 |
+
|
434 |
+
def __init__(
|
435 |
+
self,
|
436 |
+
parser: BaseParser,
|
437 |
+
split: str = "train",
|
438 |
+
num_input_frames: Optional[int] = None,
|
439 |
+
patch_size: Optional[int] = None,
|
440 |
+
load_depths: bool = False,
|
441 |
+
load_mono_disps: bool = False,
|
442 |
+
):
|
443 |
+
self.parser = parser
|
444 |
+
self.split = split
|
445 |
+
self.num_input_frames = num_input_frames
|
446 |
+
self.patch_size = patch_size
|
447 |
+
self.load_depths = load_depths
|
448 |
+
self.load_mono_disps = load_mono_disps
|
449 |
+
if load_mono_disps:
|
450 |
+
assert isinstance(parser, DirectParser)
|
451 |
+
assert parser.mono_disps is not None
|
452 |
+
if isinstance(parser, ReconfusionParser):
|
453 |
+
ids_per_split = parser.splits_per_num_input_frames[num_input_frames]
|
454 |
+
self.indices = ids_per_split[
|
455 |
+
"train_ids" if split == "train" else "test_ids"
|
456 |
+
]
|
457 |
+
else:
|
458 |
+
indices = np.arange(len(self.parser.image_names))
|
459 |
+
if split == "train":
|
460 |
+
self.indices = (
|
461 |
+
indices[indices % self.parser.test_every != 0]
|
462 |
+
if self.parser.test_every is not None
|
463 |
+
else indices
|
464 |
+
)
|
465 |
+
else:
|
466 |
+
self.indices = (
|
467 |
+
indices[indices % self.parser.test_every == 0]
|
468 |
+
if self.parser.test_every is not None
|
469 |
+
else indices
|
470 |
+
)
|
471 |
+
|
472 |
+
def __len__(self):
|
473 |
+
return len(self.indices)
|
474 |
+
|
475 |
+
def __getitem__(self, item: int) -> Dict[str, Any]:
|
476 |
+
index = self.indices[item]
|
477 |
+
if isinstance(self.parser, DirectParser):
|
478 |
+
image = self.parser.imgs[index]
|
479 |
+
else:
|
480 |
+
image = iio.imread(self.parser.image_paths[index])[..., :3]
|
481 |
+
camera_id = self.parser.camera_ids[index]
|
482 |
+
K = self.parser.Ks_dict[camera_id].copy() # undistorted K
|
483 |
+
params = self.parser.params_dict.get(camera_id, None)
|
484 |
+
camtoworlds = self.parser.camtoworlds[index]
|
485 |
+
|
486 |
+
x, y, w, h = 0, 0, image.shape[1], image.shape[0]
|
487 |
+
if params is not None and len(params) > 0:
|
488 |
+
# Images are distorted. Undistort them.
|
489 |
+
mapx, mapy = (
|
490 |
+
self.parser.mapx_dict[camera_id],
|
491 |
+
self.parser.mapy_dict[camera_id],
|
492 |
+
)
|
493 |
+
image = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR)
|
494 |
+
x, y, w, h = self.parser.roi_undist_dict[camera_id]
|
495 |
+
image = image[y : y + h, x : x + w]
|
496 |
+
|
497 |
+
if self.patch_size is not None:
|
498 |
+
# Random crop.
|
499 |
+
h, w = image.shape[:2]
|
500 |
+
x = np.random.randint(0, max(w - self.patch_size, 1))
|
501 |
+
y = np.random.randint(0, max(h - self.patch_size, 1))
|
502 |
+
image = image[y : y + self.patch_size, x : x + self.patch_size]
|
503 |
+
K[0, 2] -= x
|
504 |
+
K[1, 2] -= y
|
505 |
+
|
506 |
+
data = {
|
507 |
+
"K": torch.from_numpy(K).float(),
|
508 |
+
"camtoworld": torch.from_numpy(camtoworlds).float(),
|
509 |
+
"image": torch.from_numpy(image).float(),
|
510 |
+
"image_id": item, # the index of the image in the dataset
|
511 |
+
}
|
512 |
+
|
513 |
+
if self.load_depths:
|
514 |
+
# projected points to image plane to get depths
|
515 |
+
worldtocams = np.linalg.inv(camtoworlds)
|
516 |
+
image_name = self.parser.image_names[index]
|
517 |
+
point_indices = self.parser.point_indices[image_name]
|
518 |
+
points_world = self.parser.points[point_indices]
|
519 |
+
points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T
|
520 |
+
points_proj = (K @ points_cam.T).T
|
521 |
+
points = points_proj[:, :2] / points_proj[:, 2:3] # (M, 2)
|
522 |
+
depths = points_cam[:, 2] # (M,)
|
523 |
+
if self.patch_size is not None:
|
524 |
+
points[:, 0] -= x
|
525 |
+
points[:, 1] -= y
|
526 |
+
# filter out points outside the image
|
527 |
+
selector = (
|
528 |
+
(points[:, 0] >= 0)
|
529 |
+
& (points[:, 0] < image.shape[1])
|
530 |
+
& (points[:, 1] >= 0)
|
531 |
+
& (points[:, 1] < image.shape[0])
|
532 |
+
& (depths > 0)
|
533 |
+
)
|
534 |
+
points = points[selector]
|
535 |
+
depths = depths[selector]
|
536 |
+
data["points"] = torch.from_numpy(points).float()
|
537 |
+
data["depths"] = torch.from_numpy(depths).float()
|
538 |
+
if self.load_mono_disps:
|
539 |
+
data["mono_disps"] = torch.from_numpy(self.parser.mono_disps[index]).float() # type: ignore
|
540 |
+
|
541 |
+
return data
|
542 |
+
|
543 |
+
|
544 |
+
def get_parser(parser_type: str, **kwargs) -> BaseParser:
|
545 |
+
if parser_type == "colmap":
|
546 |
+
parser = COLMAPParser(**kwargs)
|
547 |
+
elif parser_type == "direct":
|
548 |
+
parser = DirectParser(**kwargs)
|
549 |
+
elif parser_type == "reconfusion":
|
550 |
+
parser = ReconfusionParser(**kwargs)
|
551 |
+
else:
|
552 |
+
raise ValueError(f"Unknown parser type: {parser_type}")
|
553 |
+
return parser
|
seva/eval.py
ADDED
@@ -0,0 +1,1988 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import threading
|
7 |
+
from typing import List, Literal, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
from colorama import Fore, Style, init
|
11 |
+
|
12 |
+
init(autoreset=True)
|
13 |
+
|
14 |
+
import imageio.v3 as iio
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torchvision.transforms.functional as TF
|
19 |
+
from einops import repeat
|
20 |
+
from PIL import Image
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
|
23 |
+
from seva.geometry import get_camera_dist, get_plucker_coordinates, to_hom_pose
|
24 |
+
from seva.sampling import (
|
25 |
+
EulerEDMSampler,
|
26 |
+
MultiviewCFG,
|
27 |
+
MultiviewTemporalCFG,
|
28 |
+
VanillaCFG,
|
29 |
+
)
|
30 |
+
from seva.utils import seed_everything
|
31 |
+
|
32 |
+
try:
|
33 |
+
# Check if version string contains 'dev' or 'nightly'
|
34 |
+
version = torch.__version__
|
35 |
+
IS_TORCH_NIGHTLY = "dev" in version
|
36 |
+
if IS_TORCH_NIGHTLY:
|
37 |
+
torch._dynamo.config.cache_size_limit = 128 # type: ignore[assignment]
|
38 |
+
torch._dynamo.config.accumulated_cache_size_limit = 1024 # type: ignore[assignment]
|
39 |
+
torch._dynamo.config.force_parameter_static_shapes = False # type: ignore[assignment]
|
40 |
+
except Exception:
|
41 |
+
IS_TORCH_NIGHTLY = False
|
42 |
+
|
43 |
+
|
44 |
+
def pad_indices(
|
45 |
+
input_indices: List[int],
|
46 |
+
test_indices: List[int],
|
47 |
+
T: int,
|
48 |
+
padding_mode: Literal["first", "last", "none"] = "last",
|
49 |
+
):
|
50 |
+
assert padding_mode in ["last", "none"], "`first` padding is not supported yet."
|
51 |
+
if padding_mode == "last":
|
52 |
+
padded_indices = [
|
53 |
+
i for i in range(T) if i not in (input_indices + test_indices)
|
54 |
+
]
|
55 |
+
else:
|
56 |
+
padded_indices = []
|
57 |
+
input_selects = list(range(len(input_indices)))
|
58 |
+
test_selects = list(range(len(test_indices)))
|
59 |
+
if max(input_indices) > max(test_indices):
|
60 |
+
# last elem from input
|
61 |
+
input_selects += [input_selects[-1]] * len(padded_indices)
|
62 |
+
input_indices = input_indices + padded_indices
|
63 |
+
sorted_inds = np.argsort(input_indices)
|
64 |
+
input_indices = [input_indices[ind] for ind in sorted_inds]
|
65 |
+
input_selects = [input_selects[ind] for ind in sorted_inds]
|
66 |
+
else:
|
67 |
+
# last elem from test
|
68 |
+
test_selects += [test_selects[-1]] * len(padded_indices)
|
69 |
+
test_indices = test_indices + padded_indices
|
70 |
+
sorted_inds = np.argsort(test_indices)
|
71 |
+
test_indices = [test_indices[ind] for ind in sorted_inds]
|
72 |
+
test_selects = [test_selects[ind] for ind in sorted_inds]
|
73 |
+
|
74 |
+
if padding_mode == "last":
|
75 |
+
input_maps = np.array([-1] * T)
|
76 |
+
test_maps = np.array([-1] * T)
|
77 |
+
else:
|
78 |
+
input_maps = np.array([-1] * (len(input_indices) + len(test_indices)))
|
79 |
+
test_maps = np.array([-1] * (len(input_indices) + len(test_indices)))
|
80 |
+
input_maps[input_indices] = input_selects
|
81 |
+
test_maps[test_indices] = test_selects
|
82 |
+
return input_indices, test_indices, input_maps, test_maps
|
83 |
+
|
84 |
+
|
85 |
+
def assemble(
|
86 |
+
input,
|
87 |
+
test,
|
88 |
+
input_maps,
|
89 |
+
test_maps,
|
90 |
+
):
|
91 |
+
T = len(input_maps)
|
92 |
+
assembled = torch.zeros_like(test[-1:]).repeat_interleave(T, dim=0)
|
93 |
+
assembled[input_maps != -1] = input[input_maps[input_maps != -1]]
|
94 |
+
assembled[test_maps != -1] = test[test_maps[test_maps != -1]]
|
95 |
+
assert np.logical_xor(input_maps != -1, test_maps != -1).all()
|
96 |
+
return assembled
|
97 |
+
|
98 |
+
|
99 |
+
def get_resizing_factor(
|
100 |
+
target_shape: Tuple[int, int], # H, W
|
101 |
+
current_shape: Tuple[int, int], # H, W
|
102 |
+
cover_target: bool = True,
|
103 |
+
# If True, the output shape will fully cover the target shape.
|
104 |
+
# If No, the target shape will fully cover the output shape.
|
105 |
+
) -> float:
|
106 |
+
r_bound = target_shape[1] / target_shape[0]
|
107 |
+
aspect_r = current_shape[1] / current_shape[0]
|
108 |
+
if r_bound >= 1.0:
|
109 |
+
if cover_target:
|
110 |
+
if aspect_r >= r_bound:
|
111 |
+
factor = min(target_shape) / min(current_shape)
|
112 |
+
elif aspect_r < 1.0:
|
113 |
+
factor = max(target_shape) / min(current_shape)
|
114 |
+
else:
|
115 |
+
factor = max(target_shape) / max(current_shape)
|
116 |
+
else:
|
117 |
+
if aspect_r >= r_bound:
|
118 |
+
factor = max(target_shape) / max(current_shape)
|
119 |
+
elif aspect_r < 1.0:
|
120 |
+
factor = min(target_shape) / max(current_shape)
|
121 |
+
else:
|
122 |
+
factor = min(target_shape) / min(current_shape)
|
123 |
+
else:
|
124 |
+
if cover_target:
|
125 |
+
if aspect_r <= r_bound:
|
126 |
+
factor = min(target_shape) / min(current_shape)
|
127 |
+
elif aspect_r > 1.0:
|
128 |
+
factor = max(target_shape) / min(current_shape)
|
129 |
+
else:
|
130 |
+
factor = max(target_shape) / max(current_shape)
|
131 |
+
else:
|
132 |
+
if aspect_r <= r_bound:
|
133 |
+
factor = max(target_shape) / max(current_shape)
|
134 |
+
elif aspect_r > 1.0:
|
135 |
+
factor = min(target_shape) / max(current_shape)
|
136 |
+
else:
|
137 |
+
factor = min(target_shape) / min(current_shape)
|
138 |
+
return factor
|
139 |
+
|
140 |
+
|
141 |
+
def get_unique_embedder_keys_from_conditioner(conditioner):
|
142 |
+
keys = [x.input_key for x in conditioner.embedders if x.input_key is not None]
|
143 |
+
keys = [item for sublist in keys for item in sublist] # Flatten list
|
144 |
+
return set(keys)
|
145 |
+
|
146 |
+
|
147 |
+
def get_wh_with_fixed_shortest_side(w, h, size):
|
148 |
+
# size is smaller or equal to zero, we return original w h
|
149 |
+
if size is None or size <= 0:
|
150 |
+
return w, h
|
151 |
+
if w < h:
|
152 |
+
new_w = size
|
153 |
+
new_h = int(size * h / w)
|
154 |
+
else:
|
155 |
+
new_h = size
|
156 |
+
new_w = int(size * w / h)
|
157 |
+
return new_w, new_h
|
158 |
+
|
159 |
+
|
160 |
+
def load_img_and_K(
|
161 |
+
image_path_or_size: Union[str, torch.Size],
|
162 |
+
size: Optional[Union[int, Tuple[int, int]]],
|
163 |
+
scale: float = 1.0,
|
164 |
+
center: Tuple[float, float] = (0.5, 0.5),
|
165 |
+
K: torch.Tensor | None = None,
|
166 |
+
size_stride: int = 1,
|
167 |
+
center_crop: bool = False,
|
168 |
+
image_as_tensor: bool = True,
|
169 |
+
context_rgb: np.ndarray | None = None,
|
170 |
+
device: str = "cuda",
|
171 |
+
):
|
172 |
+
if isinstance(image_path_or_size, torch.Size):
|
173 |
+
image = Image.new("RGBA", image_path_or_size[::-1])
|
174 |
+
else:
|
175 |
+
image = Image.open(image_path_or_size).convert("RGBA")
|
176 |
+
|
177 |
+
w, h = image.size
|
178 |
+
if size is None:
|
179 |
+
size = (w, h)
|
180 |
+
|
181 |
+
image = np.array(image).astype(np.float32) / 255
|
182 |
+
if image.shape[-1] == 4:
|
183 |
+
rgb, alpha = image[:, :, :3], image[:, :, 3:]
|
184 |
+
if context_rgb is not None:
|
185 |
+
image = rgb * alpha + context_rgb * (1 - alpha)
|
186 |
+
else:
|
187 |
+
image = rgb * alpha + (1 - alpha)
|
188 |
+
image = image.transpose(2, 0, 1)
|
189 |
+
image = torch.from_numpy(image).to(dtype=torch.float32)
|
190 |
+
image = image.unsqueeze(0)
|
191 |
+
|
192 |
+
if isinstance(size, (tuple, list)):
|
193 |
+
# => if size is a tuple or list, we first rescale to fully cover the `size`
|
194 |
+
# area and then crop the `size` area from the rescale image
|
195 |
+
W, H = size
|
196 |
+
else:
|
197 |
+
# => if size is int, we rescale the image to fit the shortest side to size
|
198 |
+
# => if size is None, no rescaling is applied
|
199 |
+
W, H = get_wh_with_fixed_shortest_side(w, h, size)
|
200 |
+
W, H = (
|
201 |
+
math.floor(W / size_stride + 0.5) * size_stride,
|
202 |
+
math.floor(H / size_stride + 0.5) * size_stride,
|
203 |
+
)
|
204 |
+
|
205 |
+
rfs = get_resizing_factor((math.floor(H * scale), math.floor(W * scale)), (h, w))
|
206 |
+
resize_size = rh, rw = [int(np.ceil(rfs * s)) for s in (h, w)]
|
207 |
+
image = torch.nn.functional.interpolate(
|
208 |
+
image, resize_size, mode="area", antialias=False
|
209 |
+
)
|
210 |
+
if scale < 1.0:
|
211 |
+
pw = math.ceil((W - resize_size[1]) * 0.5)
|
212 |
+
ph = math.ceil((H - resize_size[0]) * 0.5)
|
213 |
+
image = F.pad(image, (pw, pw, ph, ph), "constant", 1.0)
|
214 |
+
|
215 |
+
cy_center = int(center[1] * image.shape[-2])
|
216 |
+
cx_center = int(center[0] * image.shape[-1])
|
217 |
+
if center_crop:
|
218 |
+
side = min(H, W)
|
219 |
+
ct = max(0, cy_center - side // 2)
|
220 |
+
cl = max(0, cx_center - side // 2)
|
221 |
+
ct = min(ct, image.shape[-2] - side)
|
222 |
+
cl = min(cl, image.shape[-1] - side)
|
223 |
+
image = TF.crop(image, top=ct, left=cl, height=side, width=side)
|
224 |
+
else:
|
225 |
+
ct = max(0, cy_center - H // 2)
|
226 |
+
cl = max(0, cx_center - W // 2)
|
227 |
+
ct = min(ct, image.shape[-2] - H)
|
228 |
+
cl = min(cl, image.shape[-1] - W)
|
229 |
+
image = TF.crop(image, top=ct, left=cl, height=H, width=W)
|
230 |
+
|
231 |
+
if K is not None:
|
232 |
+
K = K.clone()
|
233 |
+
if torch.all(K[:2, -1] >= 0) and torch.all(K[:2, -1] <= 1):
|
234 |
+
K[:2] *= K.new_tensor([rw, rh])[:, None] # normalized K
|
235 |
+
else:
|
236 |
+
K[:2] *= K.new_tensor([rw / w, rh / h])[:, None] # unnormalized K
|
237 |
+
K[:2, 2] -= K.new_tensor([cl, ct])
|
238 |
+
|
239 |
+
if image_as_tensor:
|
240 |
+
# tensor of shape (1, 3, H, W) with values ranging from (-1, 1)
|
241 |
+
image = image.to(device) * 2.0 - 1.0
|
242 |
+
else:
|
243 |
+
# PIL Image with values ranging from (0, 255)
|
244 |
+
image = image.permute(0, 2, 3, 1).numpy()[0]
|
245 |
+
image = Image.fromarray((image * 255).astype(np.uint8))
|
246 |
+
return image, K
|
247 |
+
|
248 |
+
|
249 |
+
def transform_img_and_K(
|
250 |
+
image: torch.Tensor,
|
251 |
+
size: Union[int, Tuple[int, int]],
|
252 |
+
scale: float = 1.0,
|
253 |
+
center: Tuple[float, float] = (0.5, 0.5),
|
254 |
+
K: torch.Tensor | None = None,
|
255 |
+
size_stride: int = 1,
|
256 |
+
mode: str = "crop",
|
257 |
+
):
|
258 |
+
assert mode in [
|
259 |
+
"crop",
|
260 |
+
"pad",
|
261 |
+
"stretch",
|
262 |
+
], f"mode should be one of ['crop', 'pad', 'stretch'], got {mode}"
|
263 |
+
|
264 |
+
h, w = image.shape[-2:]
|
265 |
+
if isinstance(size, (tuple, list)):
|
266 |
+
# => if size is a tuple or list, we first rescale to fully cover the `size`
|
267 |
+
# area and then crop the `size` area from the rescale image
|
268 |
+
W, H = size
|
269 |
+
else:
|
270 |
+
# => if size is int, we rescale the image to fit the shortest side to size
|
271 |
+
# => if size is None, no rescaling is applied
|
272 |
+
W, H = get_wh_with_fixed_shortest_side(w, h, size)
|
273 |
+
W, H = (
|
274 |
+
math.floor(W / size_stride + 0.5) * size_stride,
|
275 |
+
math.floor(H / size_stride + 0.5) * size_stride,
|
276 |
+
)
|
277 |
+
|
278 |
+
if mode == "stretch":
|
279 |
+
rh, rw = H, W
|
280 |
+
else:
|
281 |
+
rfs = get_resizing_factor(
|
282 |
+
(H, W),
|
283 |
+
(h, w),
|
284 |
+
cover_target=mode != "pad",
|
285 |
+
)
|
286 |
+
(rh, rw) = [int(np.ceil(rfs * s)) for s in (h, w)]
|
287 |
+
|
288 |
+
rh, rw = int(rh / scale), int(rw / scale)
|
289 |
+
image = torch.nn.functional.interpolate(
|
290 |
+
image, (rh, rw), mode="area", antialias=False
|
291 |
+
)
|
292 |
+
|
293 |
+
cy_center = int(center[1] * image.shape[-2])
|
294 |
+
cx_center = int(center[0] * image.shape[-1])
|
295 |
+
if mode != "pad":
|
296 |
+
ct = max(0, cy_center - H // 2)
|
297 |
+
cl = max(0, cx_center - W // 2)
|
298 |
+
ct = min(ct, image.shape[-2] - H)
|
299 |
+
cl = min(cl, image.shape[-1] - W)
|
300 |
+
image = TF.crop(image, top=ct, left=cl, height=H, width=W)
|
301 |
+
pl, pt = 0, 0
|
302 |
+
else:
|
303 |
+
pt = max(0, H // 2 - cy_center)
|
304 |
+
pl = max(0, W // 2 - cx_center)
|
305 |
+
pb = max(0, H - pt - image.shape[-2])
|
306 |
+
pr = max(0, W - pl - image.shape[-1])
|
307 |
+
image = TF.pad(
|
308 |
+
image,
|
309 |
+
[pl, pt, pr, pb],
|
310 |
+
)
|
311 |
+
cl, ct = 0, 0
|
312 |
+
|
313 |
+
if K is not None:
|
314 |
+
K = K.clone()
|
315 |
+
# K[:, :2, 2] += K.new_tensor([pl, pt])
|
316 |
+
if torch.all(K[:, :2, -1] >= 0) and torch.all(K[:, :2, -1] <= 1):
|
317 |
+
K[:, :2] *= K.new_tensor([rw, rh])[None, :, None] # normalized K
|
318 |
+
else:
|
319 |
+
K[:, :2] *= K.new_tensor([rw / w, rh / h])[None, :, None] # unnormalized K
|
320 |
+
K[:, :2, 2] += K.new_tensor([pl - cl, pt - ct])
|
321 |
+
|
322 |
+
return image, K
|
323 |
+
|
324 |
+
|
325 |
+
lowvram_mode = False
|
326 |
+
|
327 |
+
|
328 |
+
def set_lowvram_mode(mode):
|
329 |
+
global lowvram_mode
|
330 |
+
lowvram_mode = mode
|
331 |
+
|
332 |
+
|
333 |
+
def load_model(model, device: str = "cuda"):
|
334 |
+
model.to(device)
|
335 |
+
|
336 |
+
|
337 |
+
def unload_model(model):
|
338 |
+
global lowvram_mode
|
339 |
+
if lowvram_mode:
|
340 |
+
model.cpu()
|
341 |
+
torch.cuda.empty_cache()
|
342 |
+
|
343 |
+
|
344 |
+
def infer_prior_stats(
|
345 |
+
T,
|
346 |
+
num_input_frames,
|
347 |
+
num_total_frames,
|
348 |
+
version_dict,
|
349 |
+
):
|
350 |
+
options = version_dict["options"]
|
351 |
+
chunk_strategy = options.get("chunk_strategy", "nearest")
|
352 |
+
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
|
353 |
+
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
|
354 |
+
# get traj_prior_c2ws for 2-pass sampling
|
355 |
+
if chunk_strategy.startswith("interp"):
|
356 |
+
# Start and end have alreay taken up two slots
|
357 |
+
# +1 means we need X + 1 prior frames to bound X times forwards for all test frames
|
358 |
+
|
359 |
+
# Tuning up `num_prior_frames_ratio` is helpful when you observe sudden jump in the
|
360 |
+
# generated frames due to insufficient prior frames. This option is effective for
|
361 |
+
# complicated trajectory and when `interp` strategy is used (usually semi-dense-view
|
362 |
+
# regime). Recommended range is [1.0 (default), 1.5].
|
363 |
+
if num_input_frames >= options.get("num_input_semi_dense", 9):
|
364 |
+
num_prior_frames = (
|
365 |
+
math.ceil(
|
366 |
+
num_total_frames
|
367 |
+
/ (T_second_pass - 2)
|
368 |
+
* options.get("num_prior_frames_ratio", 1.0)
|
369 |
+
)
|
370 |
+
+ 1
|
371 |
+
)
|
372 |
+
|
373 |
+
if num_prior_frames + num_input_frames < T_first_pass:
|
374 |
+
num_prior_frames = T_first_pass - num_input_frames
|
375 |
+
|
376 |
+
num_prior_frames = max(
|
377 |
+
num_prior_frames,
|
378 |
+
options.get("num_prior_frames", 0),
|
379 |
+
)
|
380 |
+
|
381 |
+
T_first_pass = num_prior_frames + num_input_frames
|
382 |
+
|
383 |
+
if "gt" in chunk_strategy:
|
384 |
+
T_second_pass = T_second_pass + num_input_frames
|
385 |
+
|
386 |
+
# Dynamically update context window length.
|
387 |
+
version_dict["T"] = [T_first_pass, T_second_pass]
|
388 |
+
|
389 |
+
else:
|
390 |
+
num_prior_frames = (
|
391 |
+
math.ceil(
|
392 |
+
num_total_frames
|
393 |
+
/ (
|
394 |
+
T_second_pass
|
395 |
+
- 2
|
396 |
+
- (num_input_frames if "gt" in chunk_strategy else 0)
|
397 |
+
)
|
398 |
+
* options.get("num_prior_frames_ratio", 1.0)
|
399 |
+
)
|
400 |
+
+ 1
|
401 |
+
)
|
402 |
+
|
403 |
+
if num_prior_frames + num_input_frames < T_first_pass:
|
404 |
+
num_prior_frames = T_first_pass - num_input_frames
|
405 |
+
|
406 |
+
num_prior_frames = max(
|
407 |
+
num_prior_frames,
|
408 |
+
options.get("num_prior_frames", 0),
|
409 |
+
)
|
410 |
+
else:
|
411 |
+
num_prior_frames = max(
|
412 |
+
T_first_pass - num_input_frames,
|
413 |
+
options.get("num_prior_frames", 0),
|
414 |
+
)
|
415 |
+
|
416 |
+
if num_input_frames >= options.get("num_input_semi_dense", 9):
|
417 |
+
T_first_pass = num_prior_frames + num_input_frames
|
418 |
+
|
419 |
+
# Dynamically update context window length.
|
420 |
+
version_dict["T"] = [T_first_pass, T_second_pass]
|
421 |
+
|
422 |
+
return num_prior_frames
|
423 |
+
|
424 |
+
|
425 |
+
def infer_prior_inds(
|
426 |
+
c2ws,
|
427 |
+
num_prior_frames,
|
428 |
+
input_frame_indices,
|
429 |
+
options,
|
430 |
+
):
|
431 |
+
chunk_strategy = options.get("chunk_strategy", "nearest")
|
432 |
+
if chunk_strategy.startswith("interp"):
|
433 |
+
prior_frame_indices = np.array(
|
434 |
+
[i for i in range(c2ws.shape[0]) if i not in input_frame_indices]
|
435 |
+
)
|
436 |
+
prior_frame_indices = prior_frame_indices[
|
437 |
+
np.ceil(
|
438 |
+
np.linspace(
|
439 |
+
0, prior_frame_indices.shape[0] - 1, num_prior_frames, endpoint=True
|
440 |
+
)
|
441 |
+
).astype(int)
|
442 |
+
] # having a ceil here is actually safer for corner case
|
443 |
+
else:
|
444 |
+
prior_frame_indices = []
|
445 |
+
while len(prior_frame_indices) < num_prior_frames:
|
446 |
+
closest_distance = np.abs(
|
447 |
+
np.arange(c2ws.shape[0])[None]
|
448 |
+
- np.concatenate(
|
449 |
+
[np.array(input_frame_indices), np.array(prior_frame_indices)]
|
450 |
+
)[:, None]
|
451 |
+
).min(0)
|
452 |
+
prior_frame_indices.append(np.argsort(closest_distance)[-1])
|
453 |
+
return np.sort(prior_frame_indices)
|
454 |
+
|
455 |
+
|
456 |
+
def compute_relative_inds(
|
457 |
+
source_inds,
|
458 |
+
target_inds,
|
459 |
+
):
|
460 |
+
assert len(source_inds) > 2
|
461 |
+
# compute relative indices of target_inds within source_inds
|
462 |
+
relative_inds = []
|
463 |
+
for ind in target_inds:
|
464 |
+
if ind in source_inds:
|
465 |
+
relative_ind = int(np.where(source_inds == ind)[0][0])
|
466 |
+
elif ind < source_inds[0]:
|
467 |
+
# extrapolate
|
468 |
+
relative_ind = -((source_inds[0] - ind) / (source_inds[1] - source_inds[0]))
|
469 |
+
elif ind > source_inds[-1]:
|
470 |
+
# extrapolate
|
471 |
+
relative_ind = len(source_inds) + (
|
472 |
+
(ind - source_inds[-1]) / (source_inds[-1] - source_inds[-2])
|
473 |
+
)
|
474 |
+
else:
|
475 |
+
# interpolate
|
476 |
+
lower_inds = source_inds[source_inds < ind]
|
477 |
+
upper_inds = source_inds[source_inds > ind]
|
478 |
+
if len(lower_inds) > 0 and len(upper_inds) > 0:
|
479 |
+
lower_ind = lower_inds[-1]
|
480 |
+
upper_ind = upper_inds[0]
|
481 |
+
relative_lower_ind = int(np.where(source_inds == lower_ind)[0][0])
|
482 |
+
relative_upper_ind = int(np.where(source_inds == upper_ind)[0][0])
|
483 |
+
relative_ind = relative_lower_ind + (ind - lower_ind) / (
|
484 |
+
upper_ind - lower_ind
|
485 |
+
) * (relative_upper_ind - relative_lower_ind)
|
486 |
+
else:
|
487 |
+
# Out of range
|
488 |
+
relative_inds.append(float("nan")) # Or some other placeholder
|
489 |
+
relative_inds.append(relative_ind)
|
490 |
+
return relative_inds
|
491 |
+
|
492 |
+
|
493 |
+
def find_nearest_source_inds(
|
494 |
+
source_c2ws,
|
495 |
+
target_c2ws,
|
496 |
+
nearest_num=1,
|
497 |
+
mode="translation",
|
498 |
+
):
|
499 |
+
dists = get_camera_dist(source_c2ws, target_c2ws, mode=mode).cpu().numpy()
|
500 |
+
sorted_inds = np.argsort(dists, axis=0).T
|
501 |
+
return sorted_inds[:, :nearest_num]
|
502 |
+
|
503 |
+
|
504 |
+
def chunk_input_and_test(
|
505 |
+
T,
|
506 |
+
input_c2ws,
|
507 |
+
test_c2ws,
|
508 |
+
input_ords, # orders
|
509 |
+
test_ords, # orders
|
510 |
+
options,
|
511 |
+
task: str = "img2img",
|
512 |
+
chunk_strategy: str = "gt",
|
513 |
+
gt_input_inds: list = [],
|
514 |
+
):
|
515 |
+
M, N = input_c2ws.shape[0], test_c2ws.shape[0]
|
516 |
+
|
517 |
+
chunks = []
|
518 |
+
if chunk_strategy.startswith("gt"):
|
519 |
+
assert len(gt_input_inds) < T, (
|
520 |
+
f"Number of gt input frames {len(gt_input_inds)} should be "
|
521 |
+
f"less than {T} when `gt` chunking strategy is used."
|
522 |
+
)
|
523 |
+
assert (
|
524 |
+
list(range(M)) == gt_input_inds
|
525 |
+
), "All input_c2ws should be gt when `gt` chunking strategy is used."
|
526 |
+
|
527 |
+
# LEGACY CHUNKING STRATEGY
|
528 |
+
# num_test_per_chunk = T - len(gt_input_inds)
|
529 |
+
# test_inds_per_chunk = [i for i in range(T) if i not in gt_input_inds]
|
530 |
+
# for i in range(0, test_c2ws.shape[0], num_test_per_chunk):
|
531 |
+
# chunk = ["NULL"] * T
|
532 |
+
# for j, k in enumerate(gt_input_inds):
|
533 |
+
# chunk[k] = f"!{j:03d}"
|
534 |
+
# for j, k in enumerate(
|
535 |
+
# test_inds_per_chunk[: test_c2ws[i : i + num_test_per_chunk].shape[0]]
|
536 |
+
# ):
|
537 |
+
# chunk[k] = f">{i + j:03d}"
|
538 |
+
# chunks.append(chunk)
|
539 |
+
|
540 |
+
num_test_seen = 0
|
541 |
+
while num_test_seen < N:
|
542 |
+
chunk = [f"!{i:03d}" for i in gt_input_inds]
|
543 |
+
if chunk_strategy != "gt" and num_test_seen > 0:
|
544 |
+
pseudo_num_ratio = options.get("pseudo_num_ratio", 0.33)
|
545 |
+
if (N - num_test_seen) >= math.floor(
|
546 |
+
(T - len(gt_input_inds)) * pseudo_num_ratio
|
547 |
+
):
|
548 |
+
pseudo_num = math.ceil((T - len(gt_input_inds)) * pseudo_num_ratio)
|
549 |
+
else:
|
550 |
+
pseudo_num = (T - len(gt_input_inds)) - (N - num_test_seen)
|
551 |
+
pseudo_num = min(pseudo_num, options.get("pseudo_num_max", 10000))
|
552 |
+
|
553 |
+
if "ltr" in chunk_strategy:
|
554 |
+
chunk.extend(
|
555 |
+
[
|
556 |
+
f"!{i + len(gt_input_inds):03d}"
|
557 |
+
for i in range(num_test_seen - pseudo_num, num_test_seen)
|
558 |
+
]
|
559 |
+
)
|
560 |
+
elif "nearest" in chunk_strategy:
|
561 |
+
source_inds = np.concatenate(
|
562 |
+
[
|
563 |
+
find_nearest_source_inds(
|
564 |
+
test_c2ws[:num_test_seen],
|
565 |
+
test_c2ws[num_test_seen:],
|
566 |
+
nearest_num=1, # pseudo_num,
|
567 |
+
mode="rotation",
|
568 |
+
),
|
569 |
+
find_nearest_source_inds(
|
570 |
+
test_c2ws[:num_test_seen],
|
571 |
+
test_c2ws[num_test_seen:],
|
572 |
+
nearest_num=1, # pseudo_num,
|
573 |
+
mode="translation",
|
574 |
+
),
|
575 |
+
],
|
576 |
+
axis=1,
|
577 |
+
)
|
578 |
+
####### [HACK ALERT] keep running until pseudo num is stablized ########
|
579 |
+
temp_pseudo_num = pseudo_num
|
580 |
+
while True:
|
581 |
+
nearest_source_inds = np.concatenate(
|
582 |
+
[
|
583 |
+
np.sort(
|
584 |
+
[
|
585 |
+
ind
|
586 |
+
for (ind, _) in collections.Counter(
|
587 |
+
[
|
588 |
+
item
|
589 |
+
for item in source_inds[
|
590 |
+
: T
|
591 |
+
- len(gt_input_inds)
|
592 |
+
- temp_pseudo_num
|
593 |
+
]
|
594 |
+
.flatten()
|
595 |
+
.tolist()
|
596 |
+
if item
|
597 |
+
!= (
|
598 |
+
num_test_seen - 1
|
599 |
+
) # exclude the last one here
|
600 |
+
]
|
601 |
+
).most_common(pseudo_num - 1)
|
602 |
+
],
|
603 |
+
).astype(int),
|
604 |
+
[num_test_seen - 1], # always keep the last one
|
605 |
+
]
|
606 |
+
)
|
607 |
+
if len(nearest_source_inds) >= temp_pseudo_num:
|
608 |
+
break # stablized
|
609 |
+
else:
|
610 |
+
temp_pseudo_num = len(nearest_source_inds)
|
611 |
+
pseudo_num = len(nearest_source_inds)
|
612 |
+
########################################################################
|
613 |
+
chunk.extend(
|
614 |
+
[f"!{i + len(gt_input_inds):03d}" for i in nearest_source_inds]
|
615 |
+
)
|
616 |
+
else:
|
617 |
+
raise NotImplementedError(
|
618 |
+
f"Chunking strategy {chunk_strategy} for the first pass is not implemented."
|
619 |
+
)
|
620 |
+
|
621 |
+
chunk.extend(
|
622 |
+
[
|
623 |
+
f">{i:03d}"
|
624 |
+
for i in range(
|
625 |
+
num_test_seen,
|
626 |
+
min(num_test_seen + T - len(gt_input_inds) - pseudo_num, N),
|
627 |
+
)
|
628 |
+
]
|
629 |
+
)
|
630 |
+
else:
|
631 |
+
chunk.extend(
|
632 |
+
[
|
633 |
+
f">{i:03d}"
|
634 |
+
for i in range(
|
635 |
+
num_test_seen,
|
636 |
+
min(num_test_seen + T - len(gt_input_inds), N),
|
637 |
+
)
|
638 |
+
]
|
639 |
+
)
|
640 |
+
|
641 |
+
num_test_seen += sum([1 for c in chunk if c.startswith(">")])
|
642 |
+
if len(chunk) < T:
|
643 |
+
chunk.extend(["NULL"] * (T - len(chunk)))
|
644 |
+
chunks.append(chunk)
|
645 |
+
|
646 |
+
elif chunk_strategy.startswith("nearest"):
|
647 |
+
input_imgs = np.array([f"!{i:03d}" for i in range(M)])
|
648 |
+
test_imgs = np.array([f">{i:03d}" for i in range(N)])
|
649 |
+
|
650 |
+
match = re.match(r"^nearest-(\d+)$", chunk_strategy)
|
651 |
+
if match:
|
652 |
+
nearest_num = int(match.group(1))
|
653 |
+
assert (
|
654 |
+
nearest_num < T
|
655 |
+
), f"Nearest number of {nearest_num} should be less than {T}."
|
656 |
+
source_inds = find_nearest_source_inds(
|
657 |
+
input_c2ws,
|
658 |
+
test_c2ws,
|
659 |
+
nearest_num=nearest_num,
|
660 |
+
mode="translation", # during the second pass, consider translation only is enough
|
661 |
+
)
|
662 |
+
|
663 |
+
for i in range(0, N, T - nearest_num):
|
664 |
+
nearest_source_inds = np.sort(
|
665 |
+
[
|
666 |
+
ind
|
667 |
+
for (ind, _) in collections.Counter(
|
668 |
+
source_inds[i : i + T - nearest_num].flatten().tolist()
|
669 |
+
).most_common(nearest_num)
|
670 |
+
]
|
671 |
+
)
|
672 |
+
chunk = (
|
673 |
+
input_imgs[nearest_source_inds].tolist()
|
674 |
+
+ test_imgs[i : i + T - nearest_num].tolist()
|
675 |
+
)
|
676 |
+
chunks.append(chunk + ["NULL"] * (T - len(chunk)))
|
677 |
+
|
678 |
+
else:
|
679 |
+
# do not always condition on gt cond frames
|
680 |
+
if "gt" not in chunk_strategy:
|
681 |
+
gt_input_inds = []
|
682 |
+
|
683 |
+
source_inds = find_nearest_source_inds(
|
684 |
+
input_c2ws,
|
685 |
+
test_c2ws,
|
686 |
+
nearest_num=1,
|
687 |
+
mode="translation", # during the second pass, consider translation only is enough
|
688 |
+
)[:, 0]
|
689 |
+
|
690 |
+
test_inds_per_input = {}
|
691 |
+
for test_idx, input_idx in enumerate(source_inds):
|
692 |
+
if input_idx not in test_inds_per_input:
|
693 |
+
test_inds_per_input[input_idx] = []
|
694 |
+
test_inds_per_input[input_idx].append(test_idx)
|
695 |
+
|
696 |
+
num_test_seen = 0
|
697 |
+
chunk = input_imgs[gt_input_inds].tolist()
|
698 |
+
candidate_input_inds = sorted(list(test_inds_per_input.keys()))
|
699 |
+
|
700 |
+
while num_test_seen < N:
|
701 |
+
input_idx = candidate_input_inds[0]
|
702 |
+
test_inds = test_inds_per_input[input_idx]
|
703 |
+
input_is_cond = input_idx in gt_input_inds
|
704 |
+
prefix_inds = [] if input_is_cond else [input_idx]
|
705 |
+
|
706 |
+
if len(chunk) == T - len(prefix_inds) or not candidate_input_inds:
|
707 |
+
if chunk:
|
708 |
+
chunk += ["NULL"] * (T - len(chunk))
|
709 |
+
chunks.append(chunk)
|
710 |
+
chunk = input_imgs[gt_input_inds].tolist()
|
711 |
+
if num_test_seen >= N:
|
712 |
+
break
|
713 |
+
continue
|
714 |
+
|
715 |
+
candidate_chunk = (
|
716 |
+
input_imgs[prefix_inds].tolist() + test_imgs[test_inds].tolist()
|
717 |
+
)
|
718 |
+
|
719 |
+
space_left = T - len(chunk)
|
720 |
+
if len(candidate_chunk) <= space_left:
|
721 |
+
chunk.extend(candidate_chunk)
|
722 |
+
num_test_seen += len(test_inds)
|
723 |
+
candidate_input_inds.pop(0)
|
724 |
+
else:
|
725 |
+
chunk.extend(candidate_chunk[:space_left])
|
726 |
+
num_input_idx = 0 if input_is_cond else 1
|
727 |
+
num_test_seen += space_left - num_input_idx
|
728 |
+
test_inds_per_input[input_idx] = test_inds[
|
729 |
+
space_left - num_input_idx :
|
730 |
+
]
|
731 |
+
|
732 |
+
if len(chunk) == T:
|
733 |
+
chunks.append(chunk)
|
734 |
+
chunk = input_imgs[gt_input_inds].tolist()
|
735 |
+
|
736 |
+
if chunk and chunk != input_imgs[gt_input_inds].tolist():
|
737 |
+
chunks.append(chunk + ["NULL"] * (T - len(chunk)))
|
738 |
+
|
739 |
+
elif chunk_strategy.startswith("interp"):
|
740 |
+
# `interp` chunk requires ordering info
|
741 |
+
assert input_ords is not None and test_ords is not None, (
|
742 |
+
"When using `interp` chunking strategy, ordering of input "
|
743 |
+
"and test frames should be provided."
|
744 |
+
)
|
745 |
+
|
746 |
+
# if chunk_strategy is `interp*`` and task is `img2trajvid*`, we will not
|
747 |
+
# use input views since their order info within target views is unknown
|
748 |
+
if "img2trajvid" in task:
|
749 |
+
assert (
|
750 |
+
list(range(len(gt_input_inds))) == gt_input_inds
|
751 |
+
), "`img2trajvid` task should put `gt_input_inds` in start."
|
752 |
+
input_c2ws = input_c2ws[
|
753 |
+
[ind for ind in range(M) if ind not in gt_input_inds]
|
754 |
+
]
|
755 |
+
input_ords = [
|
756 |
+
input_ords[ind] for ind in range(M) if ind not in gt_input_inds
|
757 |
+
]
|
758 |
+
M = input_c2ws.shape[0]
|
759 |
+
|
760 |
+
input_ords = [0] + input_ords # this is a hack accounting for test views
|
761 |
+
# before the first input view
|
762 |
+
input_ords[-1] += 0.01 # this is a hack ensuring last test stop is included
|
763 |
+
# in the last forward when input_ords[-1] == test_ords[-1]
|
764 |
+
input_ords = np.array(input_ords)[:, None]
|
765 |
+
input_ords_ = np.concatenate([input_ords[1:], np.full((1, 1), np.inf)])
|
766 |
+
test_ords = np.array(test_ords)[None]
|
767 |
+
|
768 |
+
in_stop_ranges = np.logical_and(
|
769 |
+
np.repeat(input_ords, N, axis=1) <= np.repeat(test_ords, M + 1, axis=0),
|
770 |
+
np.repeat(input_ords_, N, axis=1) > np.repeat(test_ords, M + 1, axis=0),
|
771 |
+
) # (M, N)
|
772 |
+
assert (in_stop_ranges.sum(1) <= T - 2).all(), (
|
773 |
+
"More input frames need to be sampled during the first pass to ensure "
|
774 |
+
f"#test frames during each forard in the second pass will not exceed {T - 2}."
|
775 |
+
)
|
776 |
+
if input_ords[1, 0] <= test_ords[0, 0]:
|
777 |
+
assert not in_stop_ranges[0].any()
|
778 |
+
if input_ords[-1, 0] >= test_ords[0, -1]:
|
779 |
+
assert not in_stop_ranges[-1].any()
|
780 |
+
|
781 |
+
gt_chunk = (
|
782 |
+
[f"!{i:03d}" for i in gt_input_inds] if "gt" in chunk_strategy else []
|
783 |
+
)
|
784 |
+
chunk = gt_chunk + []
|
785 |
+
# any test views before the first input views
|
786 |
+
if in_stop_ranges[0].any():
|
787 |
+
for j, in_range in enumerate(in_stop_ranges[0]):
|
788 |
+
if in_range:
|
789 |
+
chunk.append(f">{j:03d}")
|
790 |
+
in_stop_ranges = in_stop_ranges[1:]
|
791 |
+
|
792 |
+
i = 0
|
793 |
+
base_i = len(gt_input_inds) if "img2trajvid" in task else 0
|
794 |
+
chunk.append(f"!{i + base_i:03d}")
|
795 |
+
while i < len(in_stop_ranges):
|
796 |
+
in_stop_range = in_stop_ranges[i]
|
797 |
+
if not in_stop_range.any():
|
798 |
+
i += 1
|
799 |
+
continue
|
800 |
+
|
801 |
+
input_left = i + 1 < M
|
802 |
+
space_left = T - len(chunk)
|
803 |
+
if sum(in_stop_range) + input_left <= space_left:
|
804 |
+
for j, in_range in enumerate(in_stop_range):
|
805 |
+
if in_range:
|
806 |
+
chunk.append(f">{j:03d}")
|
807 |
+
i += 1
|
808 |
+
if input_left:
|
809 |
+
chunk.append(f"!{i + base_i:03d}")
|
810 |
+
|
811 |
+
else:
|
812 |
+
chunk += ["NULL"] * space_left
|
813 |
+
chunks.append(chunk)
|
814 |
+
chunk = gt_chunk + [f"!{i + base_i:03d}"]
|
815 |
+
|
816 |
+
if len(chunk) > 1:
|
817 |
+
chunk += ["NULL"] * (T - len(chunk))
|
818 |
+
chunks.append(chunk)
|
819 |
+
|
820 |
+
else:
|
821 |
+
raise NotImplementedError
|
822 |
+
|
823 |
+
(
|
824 |
+
input_inds_per_chunk,
|
825 |
+
input_sels_per_chunk,
|
826 |
+
test_inds_per_chunk,
|
827 |
+
test_sels_per_chunk,
|
828 |
+
) = (
|
829 |
+
[],
|
830 |
+
[],
|
831 |
+
[],
|
832 |
+
[],
|
833 |
+
)
|
834 |
+
for chunk in chunks:
|
835 |
+
input_inds = [
|
836 |
+
int(img.removeprefix("!")) for img in chunk if img.startswith("!")
|
837 |
+
]
|
838 |
+
input_sels = [chunk.index(img) for img in chunk if img.startswith("!")]
|
839 |
+
test_inds = [int(img.removeprefix(">")) for img in chunk if img.startswith(">")]
|
840 |
+
test_sels = [chunk.index(img) for img in chunk if img.startswith(">")]
|
841 |
+
input_inds_per_chunk.append(input_inds)
|
842 |
+
input_sels_per_chunk.append(input_sels)
|
843 |
+
test_inds_per_chunk.append(test_inds)
|
844 |
+
test_sels_per_chunk.append(test_sels)
|
845 |
+
|
846 |
+
if options.get("sampler_verbose", True):
|
847 |
+
|
848 |
+
def colorize(item):
|
849 |
+
if item.startswith("!"):
|
850 |
+
return f"{Fore.RED}{item}{Style.RESET_ALL}" # Red for items starting with '!'
|
851 |
+
elif item.startswith(">"):
|
852 |
+
return f"{Fore.GREEN}{item}{Style.RESET_ALL}" # Green for items starting with '>'
|
853 |
+
return item # Default color if neither '!' nor '>'
|
854 |
+
|
855 |
+
print("\nchunks:")
|
856 |
+
for chunk in chunks:
|
857 |
+
print(", ".join(colorize(item) for item in chunk))
|
858 |
+
|
859 |
+
return (
|
860 |
+
chunks,
|
861 |
+
input_inds_per_chunk, # ordering of input in raw sequence
|
862 |
+
input_sels_per_chunk, # ordering of input in one-forward sequence of length T
|
863 |
+
test_inds_per_chunk, # ordering of test in raw sequence
|
864 |
+
test_sels_per_chunk, # oredering of test in one-forward sequence of length T
|
865 |
+
)
|
866 |
+
|
867 |
+
|
868 |
+
def is_k_in_dict(d, k):
|
869 |
+
return any(map(lambda x: x.startswith(k), d.keys()))
|
870 |
+
|
871 |
+
|
872 |
+
def get_k_from_dict(d, k):
|
873 |
+
media_d = {}
|
874 |
+
for key, value in d.items():
|
875 |
+
if key == k:
|
876 |
+
return value
|
877 |
+
if key.startswith(k):
|
878 |
+
media = key.split("/")[-1]
|
879 |
+
if media == "raw":
|
880 |
+
return value
|
881 |
+
media_d[media] = value
|
882 |
+
if len(media_d) == 0:
|
883 |
+
return torch.tensor([])
|
884 |
+
assert (
|
885 |
+
len(media_d) == 1
|
886 |
+
), f"multiple media found in {d} for key {k}: {media_d.keys()}"
|
887 |
+
return media_d[media]
|
888 |
+
|
889 |
+
|
890 |
+
def update_kv_for_dict(d, k, v):
|
891 |
+
for key in d.keys():
|
892 |
+
if key.startswith(k):
|
893 |
+
d[key] = v
|
894 |
+
return d
|
895 |
+
|
896 |
+
|
897 |
+
def extend_dict(ds, d):
|
898 |
+
for key in d.keys():
|
899 |
+
if key in ds:
|
900 |
+
ds[key] = torch.cat([ds[key], d[key]], 0)
|
901 |
+
else:
|
902 |
+
ds[key] = d[key]
|
903 |
+
return ds
|
904 |
+
|
905 |
+
|
906 |
+
def replace_or_include_input_for_dict(
|
907 |
+
samples,
|
908 |
+
test_indices,
|
909 |
+
imgs,
|
910 |
+
c2w,
|
911 |
+
K,
|
912 |
+
):
|
913 |
+
samples_new = {}
|
914 |
+
for sample, value in samples.items():
|
915 |
+
if "rgb" in sample:
|
916 |
+
imgs[test_indices] = (
|
917 |
+
value[test_indices] if value.shape[0] == imgs.shape[0] else value
|
918 |
+
).to(device=imgs.device, dtype=imgs.dtype)
|
919 |
+
samples_new[sample] = imgs
|
920 |
+
elif "c2w" in sample:
|
921 |
+
c2w[test_indices] = (
|
922 |
+
value[test_indices] if value.shape[0] == c2w.shape[0] else value
|
923 |
+
).to(device=c2w.device, dtype=c2w.dtype)
|
924 |
+
samples_new[sample] = c2w
|
925 |
+
elif "intrinsics" in sample:
|
926 |
+
K[test_indices] = (
|
927 |
+
value[test_indices] if value.shape[0] == K.shape[0] else value
|
928 |
+
).to(device=K.device, dtype=K.dtype)
|
929 |
+
samples_new[sample] = K
|
930 |
+
else:
|
931 |
+
samples_new[sample] = value
|
932 |
+
return samples_new
|
933 |
+
|
934 |
+
|
935 |
+
def decode_output(
|
936 |
+
samples,
|
937 |
+
T,
|
938 |
+
indices=None,
|
939 |
+
):
|
940 |
+
# decode model output into dict if it is not
|
941 |
+
if isinstance(samples, dict):
|
942 |
+
# model with postprocessor and outputs dict
|
943 |
+
for sample, value in samples.items():
|
944 |
+
if isinstance(value, torch.Tensor):
|
945 |
+
value = value.detach().cpu()
|
946 |
+
elif isinstance(value, np.ndarray):
|
947 |
+
value = torch.from_numpy(value)
|
948 |
+
else:
|
949 |
+
value = torch.tensor(value)
|
950 |
+
|
951 |
+
if indices is not None and value.shape[0] == T:
|
952 |
+
value = value[indices]
|
953 |
+
samples[sample] = value
|
954 |
+
else:
|
955 |
+
# model without postprocessor and outputs tensor (rgb)
|
956 |
+
samples = samples.detach().cpu()
|
957 |
+
|
958 |
+
if indices is not None and samples.shape[0] == T:
|
959 |
+
samples = samples[indices]
|
960 |
+
samples = {"samples-rgb/image": samples}
|
961 |
+
|
962 |
+
return samples
|
963 |
+
|
964 |
+
|
965 |
+
def save_output(
|
966 |
+
samples,
|
967 |
+
save_path,
|
968 |
+
video_save_fps=2,
|
969 |
+
):
|
970 |
+
os.makedirs(save_path, exist_ok=True)
|
971 |
+
for sample in samples:
|
972 |
+
media_type = "video"
|
973 |
+
if "/" in sample:
|
974 |
+
sample_, media_type = sample.split("/")
|
975 |
+
else:
|
976 |
+
sample_ = sample
|
977 |
+
|
978 |
+
value = samples[sample]
|
979 |
+
if isinstance(value, torch.Tensor):
|
980 |
+
value = value.detach().cpu()
|
981 |
+
elif isinstance(value, np.ndarray):
|
982 |
+
value = torch.from_numpy(value)
|
983 |
+
else:
|
984 |
+
value = torch.tensor(value)
|
985 |
+
|
986 |
+
if media_type == "image":
|
987 |
+
value = (value.permute(0, 2, 3, 1) + 1) / 2.0
|
988 |
+
value = (value * 255).clamp(0, 255).to(torch.uint8)
|
989 |
+
iio.imwrite(
|
990 |
+
os.path.join(save_path, f"{sample_}.mp4")
|
991 |
+
if sample_
|
992 |
+
else f"{save_path}.mp4",
|
993 |
+
value,
|
994 |
+
fps=video_save_fps,
|
995 |
+
macro_block_size=1,
|
996 |
+
ffmpeg_log_level="error",
|
997 |
+
)
|
998 |
+
os.makedirs(os.path.join(save_path, sample_), exist_ok=True)
|
999 |
+
for i, s in enumerate(value):
|
1000 |
+
iio.imwrite(
|
1001 |
+
os.path.join(save_path, sample_, f"{i:03d}.png"),
|
1002 |
+
s,
|
1003 |
+
)
|
1004 |
+
elif media_type == "video":
|
1005 |
+
value = (value.permute(0, 2, 3, 1) + 1) / 2.0
|
1006 |
+
value = (value * 255).clamp(0, 255).to(torch.uint8)
|
1007 |
+
iio.imwrite(
|
1008 |
+
os.path.join(save_path, f"{sample_}.mp4"),
|
1009 |
+
value,
|
1010 |
+
fps=video_save_fps,
|
1011 |
+
macro_block_size=1,
|
1012 |
+
ffmpeg_log_level="error",
|
1013 |
+
)
|
1014 |
+
elif media_type == "raw":
|
1015 |
+
torch.save(
|
1016 |
+
value,
|
1017 |
+
os.path.join(save_path, f"{sample_}.pt"),
|
1018 |
+
)
|
1019 |
+
else:
|
1020 |
+
pass
|
1021 |
+
|
1022 |
+
|
1023 |
+
def create_transforms_simple(save_path, img_paths, img_whs, c2ws, Ks):
|
1024 |
+
import os.path as osp
|
1025 |
+
|
1026 |
+
out_frames = []
|
1027 |
+
for img_path, img_wh, c2w, K in zip(img_paths, img_whs, c2ws, Ks):
|
1028 |
+
out_frame = {
|
1029 |
+
"fl_x": K[0][0].item(),
|
1030 |
+
"fl_y": K[1][1].item(),
|
1031 |
+
"cx": K[0][2].item(),
|
1032 |
+
"cy": K[1][2].item(),
|
1033 |
+
"w": img_wh[0].item(),
|
1034 |
+
"h": img_wh[1].item(),
|
1035 |
+
"file_path": f"./{osp.relpath(img_path, start=save_path)}"
|
1036 |
+
if img_path is not None
|
1037 |
+
else None,
|
1038 |
+
"transform_matrix": c2w.tolist(),
|
1039 |
+
}
|
1040 |
+
out_frames.append(out_frame)
|
1041 |
+
out = {
|
1042 |
+
# "camera_model": "PINHOLE",
|
1043 |
+
"orientation_override": "none",
|
1044 |
+
"frames": out_frames,
|
1045 |
+
}
|
1046 |
+
with open(osp.join(save_path, "transforms.json"), "w") as of:
|
1047 |
+
json.dump(out, of, indent=5)
|
1048 |
+
|
1049 |
+
|
1050 |
+
class GradioTrackedSampler(EulerEDMSampler):
|
1051 |
+
"""
|
1052 |
+
A thin wrapper around the EulerEDMSampler that allows tracking progress and
|
1053 |
+
aborting sampling for gradio demo.
|
1054 |
+
"""
|
1055 |
+
|
1056 |
+
def __init__(self, abort_event: threading.Event, *args, **kwargs):
|
1057 |
+
super().__init__(*args, **kwargs)
|
1058 |
+
self.abort_event = abort_event
|
1059 |
+
|
1060 |
+
def __call__( # type: ignore
|
1061 |
+
self,
|
1062 |
+
denoiser,
|
1063 |
+
x: torch.Tensor,
|
1064 |
+
scale: float | torch.Tensor,
|
1065 |
+
cond: dict,
|
1066 |
+
uc: dict | None = None,
|
1067 |
+
num_steps: int | None = None,
|
1068 |
+
verbose: bool = True,
|
1069 |
+
global_pbar: gr.Progress | None = None,
|
1070 |
+
**guider_kwargs,
|
1071 |
+
) -> torch.Tensor | None:
|
1072 |
+
uc = cond if uc is None else uc
|
1073 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
1074 |
+
x,
|
1075 |
+
cond,
|
1076 |
+
uc,
|
1077 |
+
num_steps,
|
1078 |
+
)
|
1079 |
+
for i in self.get_sigma_gen(num_sigmas, verbose=verbose):
|
1080 |
+
gamma = (
|
1081 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
1082 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
1083 |
+
else 0.0
|
1084 |
+
)
|
1085 |
+
x = self.sampler_step(
|
1086 |
+
s_in * sigmas[i],
|
1087 |
+
s_in * sigmas[i + 1],
|
1088 |
+
denoiser,
|
1089 |
+
x,
|
1090 |
+
scale,
|
1091 |
+
cond,
|
1092 |
+
uc,
|
1093 |
+
gamma,
|
1094 |
+
**guider_kwargs,
|
1095 |
+
)
|
1096 |
+
# Allow tracking progress in gradio demo.
|
1097 |
+
if global_pbar is not None:
|
1098 |
+
global_pbar.update()
|
1099 |
+
# Allow aborting sampling in gradio demo.
|
1100 |
+
if self.abort_event.is_set():
|
1101 |
+
return None
|
1102 |
+
return x
|
1103 |
+
|
1104 |
+
|
1105 |
+
def create_samplers(
|
1106 |
+
guider_types: int | list[int],
|
1107 |
+
discretization,
|
1108 |
+
num_frames: list[int] | None,
|
1109 |
+
num_steps: int,
|
1110 |
+
cfg_min: float = 1.0,
|
1111 |
+
device: str | torch.device = "cuda",
|
1112 |
+
abort_event: threading.Event | None = None,
|
1113 |
+
):
|
1114 |
+
guider_mapping = {
|
1115 |
+
0: VanillaCFG,
|
1116 |
+
1: MultiviewCFG,
|
1117 |
+
2: MultiviewTemporalCFG,
|
1118 |
+
}
|
1119 |
+
samplers = []
|
1120 |
+
if not isinstance(guider_types, (list, tuple)):
|
1121 |
+
guider_types = [guider_types]
|
1122 |
+
for i, guider_type in enumerate(guider_types):
|
1123 |
+
if guider_type not in guider_mapping:
|
1124 |
+
raise ValueError(
|
1125 |
+
f"Invalid guider type {guider_type}. Must be one of {list(guider_mapping.keys())}"
|
1126 |
+
)
|
1127 |
+
guider_cls = guider_mapping[guider_type]
|
1128 |
+
guider_args = ()
|
1129 |
+
if guider_type > 0:
|
1130 |
+
guider_args += (cfg_min,)
|
1131 |
+
if guider_type == 2:
|
1132 |
+
assert num_frames is not None
|
1133 |
+
guider_args = (num_frames[i], cfg_min)
|
1134 |
+
guider = guider_cls(*guider_args)
|
1135 |
+
|
1136 |
+
if abort_event is not None:
|
1137 |
+
sampler = GradioTrackedSampler(
|
1138 |
+
abort_event,
|
1139 |
+
discretization=discretization,
|
1140 |
+
guider=guider,
|
1141 |
+
num_steps=num_steps,
|
1142 |
+
s_churn=0.0,
|
1143 |
+
s_tmin=0.0,
|
1144 |
+
s_tmax=999.0,
|
1145 |
+
s_noise=1.0,
|
1146 |
+
verbose=True,
|
1147 |
+
device=device,
|
1148 |
+
)
|
1149 |
+
else:
|
1150 |
+
sampler = EulerEDMSampler(
|
1151 |
+
discretization=discretization,
|
1152 |
+
guider=guider,
|
1153 |
+
num_steps=num_steps,
|
1154 |
+
s_churn=0.0,
|
1155 |
+
s_tmin=0.0,
|
1156 |
+
s_tmax=999.0,
|
1157 |
+
s_noise=1.0,
|
1158 |
+
verbose=True,
|
1159 |
+
device=device,
|
1160 |
+
)
|
1161 |
+
samplers.append(sampler)
|
1162 |
+
return samplers
|
1163 |
+
|
1164 |
+
|
1165 |
+
def get_value_dict(
|
1166 |
+
curr_imgs,
|
1167 |
+
curr_imgs_clip,
|
1168 |
+
curr_input_frame_indices,
|
1169 |
+
curr_c2ws,
|
1170 |
+
curr_Ks,
|
1171 |
+
curr_input_camera_indices,
|
1172 |
+
all_c2ws,
|
1173 |
+
camera_scale=2.0,
|
1174 |
+
):
|
1175 |
+
assert sorted(curr_input_camera_indices) == sorted(
|
1176 |
+
range(len(curr_input_camera_indices))
|
1177 |
+
)
|
1178 |
+
H, W, T, F = curr_imgs.shape[-2], curr_imgs.shape[-1], len(curr_imgs), 8
|
1179 |
+
|
1180 |
+
value_dict = {}
|
1181 |
+
value_dict["cond_frames_without_noise"] = curr_imgs_clip[curr_input_frame_indices]
|
1182 |
+
value_dict["cond_frames"] = curr_imgs + 0.0 * torch.randn_like(curr_imgs)
|
1183 |
+
value_dict["cond_frames_mask"] = torch.zeros(T, dtype=torch.bool)
|
1184 |
+
value_dict["cond_frames_mask"][curr_input_frame_indices] = True
|
1185 |
+
value_dict["cond_aug"] = 0.0
|
1186 |
+
|
1187 |
+
c2w = to_hom_pose(curr_c2ws.float())
|
1188 |
+
w2c = torch.linalg.inv(c2w)
|
1189 |
+
|
1190 |
+
# camera centering
|
1191 |
+
ref_c2ws = all_c2ws
|
1192 |
+
camera_dist_2med = torch.norm(
|
1193 |
+
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values,
|
1194 |
+
dim=-1,
|
1195 |
+
)
|
1196 |
+
valid_mask = camera_dist_2med <= torch.clamp(
|
1197 |
+
torch.quantile(camera_dist_2med, 0.97) * 10,
|
1198 |
+
max=1e6,
|
1199 |
+
)
|
1200 |
+
c2w[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True)
|
1201 |
+
w2c = torch.linalg.inv(c2w)
|
1202 |
+
|
1203 |
+
# camera normalization
|
1204 |
+
camera_dists = c2w[:, :3, 3].clone()
|
1205 |
+
translation_scaling_factor = (
|
1206 |
+
camera_scale
|
1207 |
+
if torch.isclose(
|
1208 |
+
torch.norm(camera_dists[0]),
|
1209 |
+
torch.zeros(1),
|
1210 |
+
atol=1e-5,
|
1211 |
+
).any()
|
1212 |
+
else (camera_scale / torch.norm(camera_dists[0]))
|
1213 |
+
)
|
1214 |
+
w2c[:, :3, 3] *= translation_scaling_factor
|
1215 |
+
c2w[:, :3, 3] *= translation_scaling_factor
|
1216 |
+
value_dict["plucker_coordinate"], _ = get_plucker_coordinates(
|
1217 |
+
extrinsics_src=w2c[0],
|
1218 |
+
extrinsics=w2c,
|
1219 |
+
intrinsics=curr_Ks.float().clone(),
|
1220 |
+
mode="plucker",
|
1221 |
+
rel_zero_translation=True,
|
1222 |
+
target_size=(H // F, W // F),
|
1223 |
+
return_grid_cam=True,
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
value_dict["c2w"] = c2w
|
1227 |
+
value_dict["K"] = curr_Ks
|
1228 |
+
value_dict["camera_mask"] = torch.zeros(T, dtype=torch.bool)
|
1229 |
+
value_dict["camera_mask"][curr_input_camera_indices] = True
|
1230 |
+
|
1231 |
+
return value_dict
|
1232 |
+
|
1233 |
+
|
1234 |
+
def do_sample(
|
1235 |
+
model,
|
1236 |
+
ae,
|
1237 |
+
conditioner,
|
1238 |
+
denoiser,
|
1239 |
+
sampler,
|
1240 |
+
value_dict,
|
1241 |
+
H,
|
1242 |
+
W,
|
1243 |
+
C,
|
1244 |
+
F,
|
1245 |
+
T,
|
1246 |
+
cfg,
|
1247 |
+
encoding_t=1,
|
1248 |
+
decoding_t=1,
|
1249 |
+
verbose=True,
|
1250 |
+
global_pbar=None,
|
1251 |
+
**_,
|
1252 |
+
):
|
1253 |
+
imgs = value_dict["cond_frames"].to("cuda")
|
1254 |
+
input_masks = value_dict["cond_frames_mask"].to("cuda")
|
1255 |
+
pluckers = value_dict["plucker_coordinate"].to("cuda")
|
1256 |
+
|
1257 |
+
num_samples = [1, T]
|
1258 |
+
with torch.inference_mode(), torch.autocast("cuda"):
|
1259 |
+
load_model(ae)
|
1260 |
+
load_model(conditioner)
|
1261 |
+
latents = torch.nn.functional.pad(
|
1262 |
+
ae.encode(imgs[input_masks], encoding_t), (0, 0, 0, 0, 0, 1), value=1.0
|
1263 |
+
)
|
1264 |
+
c_crossattn = repeat(conditioner(imgs[input_masks]).mean(0), "d -> n 1 d", n=T)
|
1265 |
+
uc_crossattn = torch.zeros_like(c_crossattn)
|
1266 |
+
c_replace = latents.new_zeros(T, *latents.shape[1:])
|
1267 |
+
c_replace[input_masks] = latents
|
1268 |
+
uc_replace = torch.zeros_like(c_replace)
|
1269 |
+
c_concat = torch.cat(
|
1270 |
+
[
|
1271 |
+
repeat(
|
1272 |
+
input_masks,
|
1273 |
+
"n -> n 1 h w",
|
1274 |
+
h=pluckers.shape[2],
|
1275 |
+
w=pluckers.shape[3],
|
1276 |
+
),
|
1277 |
+
pluckers,
|
1278 |
+
],
|
1279 |
+
1,
|
1280 |
+
)
|
1281 |
+
uc_concat = torch.cat(
|
1282 |
+
[pluckers.new_zeros(T, 1, *pluckers.shape[-2:]), pluckers], 1
|
1283 |
+
)
|
1284 |
+
c_dense_vector = pluckers
|
1285 |
+
uc_dense_vector = c_dense_vector
|
1286 |
+
# TODO(hangg): concat and dense are problematic.
|
1287 |
+
c = {
|
1288 |
+
"crossattn": c_crossattn,
|
1289 |
+
"replace": c_replace,
|
1290 |
+
"concat": c_concat,
|
1291 |
+
"dense_vector": c_dense_vector,
|
1292 |
+
}
|
1293 |
+
uc = {
|
1294 |
+
"crossattn": uc_crossattn,
|
1295 |
+
"replace": uc_replace,
|
1296 |
+
"concat": uc_concat,
|
1297 |
+
"dense_vector": uc_dense_vector,
|
1298 |
+
}
|
1299 |
+
unload_model(ae)
|
1300 |
+
unload_model(conditioner)
|
1301 |
+
|
1302 |
+
additional_model_inputs = {"num_frames": T}
|
1303 |
+
additional_sampler_inputs = {
|
1304 |
+
"c2w": value_dict["c2w"].to("cuda"),
|
1305 |
+
"K": value_dict["K"].to("cuda"),
|
1306 |
+
"input_frame_mask": value_dict["cond_frames_mask"].to("cuda"),
|
1307 |
+
}
|
1308 |
+
if global_pbar is not None:
|
1309 |
+
additional_sampler_inputs["global_pbar"] = global_pbar
|
1310 |
+
|
1311 |
+
shape = (math.prod(num_samples), C, H // F, W // F)
|
1312 |
+
randn = torch.randn(shape).to("cuda")
|
1313 |
+
|
1314 |
+
load_model(model)
|
1315 |
+
samples_z = sampler(
|
1316 |
+
lambda input, sigma, c: denoiser(
|
1317 |
+
model,
|
1318 |
+
input,
|
1319 |
+
sigma,
|
1320 |
+
c,
|
1321 |
+
**additional_model_inputs,
|
1322 |
+
),
|
1323 |
+
randn,
|
1324 |
+
scale=cfg,
|
1325 |
+
cond=c,
|
1326 |
+
uc=uc,
|
1327 |
+
verbose=verbose,
|
1328 |
+
**additional_sampler_inputs,
|
1329 |
+
)
|
1330 |
+
if samples_z is None:
|
1331 |
+
return
|
1332 |
+
unload_model(model)
|
1333 |
+
|
1334 |
+
load_model(ae)
|
1335 |
+
samples = ae.decode(samples_z, decoding_t)
|
1336 |
+
unload_model(ae)
|
1337 |
+
|
1338 |
+
return samples
|
1339 |
+
|
1340 |
+
|
1341 |
+
def run_one_scene(
|
1342 |
+
task,
|
1343 |
+
version_dict,
|
1344 |
+
model,
|
1345 |
+
ae,
|
1346 |
+
conditioner,
|
1347 |
+
denoiser,
|
1348 |
+
image_cond,
|
1349 |
+
camera_cond,
|
1350 |
+
save_path,
|
1351 |
+
use_traj_prior,
|
1352 |
+
traj_prior_Ks,
|
1353 |
+
traj_prior_c2ws,
|
1354 |
+
seed=23,
|
1355 |
+
gradio=False,
|
1356 |
+
abort_event=None,
|
1357 |
+
first_pass_pbar=None,
|
1358 |
+
second_pass_pbar=None,
|
1359 |
+
):
|
1360 |
+
H, W, T, C, F, options = (
|
1361 |
+
version_dict["H"],
|
1362 |
+
version_dict["W"],
|
1363 |
+
version_dict["T"],
|
1364 |
+
version_dict["C"],
|
1365 |
+
version_dict["f"],
|
1366 |
+
version_dict["options"],
|
1367 |
+
)
|
1368 |
+
|
1369 |
+
if isinstance(image_cond, str):
|
1370 |
+
image_cond = {"img": [image_cond]}
|
1371 |
+
imgs_clip, imgs, img_size = [], [], None
|
1372 |
+
for i, (img, K) in enumerate(zip(image_cond["img"], camera_cond["K"])):
|
1373 |
+
if isinstance(img, str) or img is None:
|
1374 |
+
img, K = load_img_and_K(img or img_size, None, K=K, device="cpu") # type: ignore
|
1375 |
+
img_size = img.shape[-2:]
|
1376 |
+
if options.get("L_short", -1) == -1:
|
1377 |
+
img, K = transform_img_and_K(
|
1378 |
+
img,
|
1379 |
+
(W, H),
|
1380 |
+
K=K[None],
|
1381 |
+
mode=(
|
1382 |
+
options.get("transform_input", "crop")
|
1383 |
+
if i in image_cond["input_indices"]
|
1384 |
+
else options.get("transform_target", "crop")
|
1385 |
+
),
|
1386 |
+
scale=(
|
1387 |
+
1.0
|
1388 |
+
if i in image_cond["input_indices"]
|
1389 |
+
else options.get("transform_scale", 1.0)
|
1390 |
+
),
|
1391 |
+
)
|
1392 |
+
else:
|
1393 |
+
downsample = 3
|
1394 |
+
assert options["L_short"] % F * 2**downsample == 0, (
|
1395 |
+
"Short side of the image should be divisible by "
|
1396 |
+
f"F*2**{downsample}={F * 2**downsample}."
|
1397 |
+
)
|
1398 |
+
img, K = transform_img_and_K(
|
1399 |
+
img,
|
1400 |
+
options["L_short"],
|
1401 |
+
K=K[None],
|
1402 |
+
size_stride=F * 2**downsample,
|
1403 |
+
mode=(
|
1404 |
+
options.get("transform_input", "crop")
|
1405 |
+
if i in image_cond["input_indices"]
|
1406 |
+
else options.get("transform_target", "crop")
|
1407 |
+
),
|
1408 |
+
scale=(
|
1409 |
+
1.0
|
1410 |
+
if i in image_cond["input_indices"]
|
1411 |
+
else options.get("transform_scale", 1.0)
|
1412 |
+
),
|
1413 |
+
)
|
1414 |
+
version_dict["W"] = W = img.shape[-1]
|
1415 |
+
version_dict["H"] = H = img.shape[-2]
|
1416 |
+
K = K[0]
|
1417 |
+
K[0] /= W
|
1418 |
+
K[1] /= H
|
1419 |
+
camera_cond["K"][i] = K
|
1420 |
+
img_clip = img
|
1421 |
+
elif isinstance(img, np.ndarray):
|
1422 |
+
img_size = torch.Size(img.shape[:2])
|
1423 |
+
img = torch.as_tensor(img).permute(2, 0, 1)
|
1424 |
+
img = img.unsqueeze(0)
|
1425 |
+
img = img / 255.0 * 2.0 - 1.0
|
1426 |
+
if not gradio:
|
1427 |
+
img, K = transform_img_and_K(img, (W, H), K=K[None])
|
1428 |
+
assert K is not None
|
1429 |
+
K = K[0]
|
1430 |
+
K[0] /= W
|
1431 |
+
K[1] /= H
|
1432 |
+
camera_cond["K"][i] = K
|
1433 |
+
img_clip = img
|
1434 |
+
else:
|
1435 |
+
assert (
|
1436 |
+
False
|
1437 |
+
), f"Variable `img` got {type(img)} type which is not supported!!!"
|
1438 |
+
imgs_clip.append(img_clip)
|
1439 |
+
imgs.append(img)
|
1440 |
+
imgs_clip = torch.cat(imgs_clip, dim=0)
|
1441 |
+
imgs = torch.cat(imgs, dim=0)
|
1442 |
+
|
1443 |
+
if traj_prior_Ks is not None:
|
1444 |
+
assert img_size is not None
|
1445 |
+
for i, prior_k in enumerate(traj_prior_Ks):
|
1446 |
+
img, prior_k = load_img_and_K(img_size, None, K=prior_k, device="cpu") # type: ignore
|
1447 |
+
img, prior_k = transform_img_and_K(
|
1448 |
+
img,
|
1449 |
+
(W, H),
|
1450 |
+
K=prior_k[None],
|
1451 |
+
mode=options.get(
|
1452 |
+
"transform_target", "crop"
|
1453 |
+
), # mode for prior is always same as target
|
1454 |
+
scale=options.get(
|
1455 |
+
"transform_scale", 1.0
|
1456 |
+
), # scale for prior is always same as target
|
1457 |
+
)
|
1458 |
+
prior_k = prior_k[0]
|
1459 |
+
prior_k[0] /= W
|
1460 |
+
prior_k[1] /= H
|
1461 |
+
traj_prior_Ks[i] = prior_k
|
1462 |
+
|
1463 |
+
options["num_frames"] = T
|
1464 |
+
discretization = denoiser.discretization
|
1465 |
+
torch.cuda.empty_cache()
|
1466 |
+
|
1467 |
+
seed_everything(seed)
|
1468 |
+
|
1469 |
+
# Get Data
|
1470 |
+
input_indices = image_cond["input_indices"]
|
1471 |
+
input_imgs = imgs[input_indices]
|
1472 |
+
input_imgs_clip = imgs_clip[input_indices]
|
1473 |
+
input_c2ws = camera_cond["c2w"][input_indices]
|
1474 |
+
input_Ks = camera_cond["K"][input_indices]
|
1475 |
+
|
1476 |
+
test_indices = [i for i in range(len(imgs)) if i not in input_indices]
|
1477 |
+
test_imgs = imgs[test_indices]
|
1478 |
+
test_imgs_clip = imgs_clip[test_indices]
|
1479 |
+
test_c2ws = camera_cond["c2w"][test_indices]
|
1480 |
+
test_Ks = camera_cond["K"][test_indices]
|
1481 |
+
|
1482 |
+
if options.get("save_input", True):
|
1483 |
+
save_output(
|
1484 |
+
{"/image": input_imgs},
|
1485 |
+
save_path=os.path.join(save_path, "input"),
|
1486 |
+
video_save_fps=2,
|
1487 |
+
)
|
1488 |
+
|
1489 |
+
if not use_traj_prior:
|
1490 |
+
chunk_strategy = options.get("chunk_strategy", "gt")
|
1491 |
+
|
1492 |
+
(
|
1493 |
+
_,
|
1494 |
+
input_inds_per_chunk,
|
1495 |
+
input_sels_per_chunk,
|
1496 |
+
test_inds_per_chunk,
|
1497 |
+
test_sels_per_chunk,
|
1498 |
+
) = chunk_input_and_test(
|
1499 |
+
T,
|
1500 |
+
input_c2ws,
|
1501 |
+
test_c2ws,
|
1502 |
+
input_indices,
|
1503 |
+
test_indices,
|
1504 |
+
options=options,
|
1505 |
+
task=task,
|
1506 |
+
chunk_strategy=chunk_strategy,
|
1507 |
+
gt_input_inds=list(range(input_c2ws.shape[0])),
|
1508 |
+
)
|
1509 |
+
print(
|
1510 |
+
f"One pass - chunking with `{chunk_strategy}` strategy: total "
|
1511 |
+
f"{len(input_inds_per_chunk)} forward(s) ..."
|
1512 |
+
)
|
1513 |
+
|
1514 |
+
all_samples = {}
|
1515 |
+
all_test_inds = []
|
1516 |
+
for i, (
|
1517 |
+
chunk_input_inds,
|
1518 |
+
chunk_input_sels,
|
1519 |
+
chunk_test_inds,
|
1520 |
+
chunk_test_sels,
|
1521 |
+
) in tqdm(
|
1522 |
+
enumerate(
|
1523 |
+
zip(
|
1524 |
+
input_inds_per_chunk,
|
1525 |
+
input_sels_per_chunk,
|
1526 |
+
test_inds_per_chunk,
|
1527 |
+
test_sels_per_chunk,
|
1528 |
+
)
|
1529 |
+
),
|
1530 |
+
total=len(input_inds_per_chunk),
|
1531 |
+
leave=False,
|
1532 |
+
):
|
1533 |
+
(
|
1534 |
+
curr_input_sels,
|
1535 |
+
curr_test_sels,
|
1536 |
+
curr_input_maps,
|
1537 |
+
curr_test_maps,
|
1538 |
+
) = pad_indices(
|
1539 |
+
chunk_input_sels,
|
1540 |
+
chunk_test_sels,
|
1541 |
+
T=T,
|
1542 |
+
padding_mode=options.get("t_padding_mode", "last"),
|
1543 |
+
)
|
1544 |
+
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [
|
1545 |
+
assemble(
|
1546 |
+
input=x[chunk_input_inds],
|
1547 |
+
test=y[chunk_test_inds],
|
1548 |
+
input_maps=curr_input_maps,
|
1549 |
+
test_maps=curr_test_maps,
|
1550 |
+
)
|
1551 |
+
for x, y in zip(
|
1552 |
+
[
|
1553 |
+
torch.cat(
|
1554 |
+
[
|
1555 |
+
input_imgs,
|
1556 |
+
get_k_from_dict(all_samples, "samples-rgb").to(
|
1557 |
+
input_imgs.device
|
1558 |
+
),
|
1559 |
+
],
|
1560 |
+
dim=0,
|
1561 |
+
),
|
1562 |
+
torch.cat(
|
1563 |
+
[
|
1564 |
+
input_imgs_clip,
|
1565 |
+
get_k_from_dict(all_samples, "samples-rgb").to(
|
1566 |
+
input_imgs.device
|
1567 |
+
),
|
1568 |
+
],
|
1569 |
+
dim=0,
|
1570 |
+
),
|
1571 |
+
torch.cat([input_c2ws, test_c2ws[all_test_inds]], dim=0),
|
1572 |
+
torch.cat([input_Ks, test_Ks[all_test_inds]], dim=0),
|
1573 |
+
], # procedually append generated prior views to the input views
|
1574 |
+
[test_imgs, test_imgs_clip, test_c2ws, test_Ks],
|
1575 |
+
)
|
1576 |
+
]
|
1577 |
+
value_dict = get_value_dict(
|
1578 |
+
curr_imgs.to("cuda"),
|
1579 |
+
curr_imgs_clip.to("cuda"),
|
1580 |
+
curr_input_sels
|
1581 |
+
+ [
|
1582 |
+
sel
|
1583 |
+
for (ind, sel) in zip(
|
1584 |
+
np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]],
|
1585 |
+
curr_test_sels,
|
1586 |
+
)
|
1587 |
+
if test_indices[ind] in image_cond["input_indices"]
|
1588 |
+
],
|
1589 |
+
curr_c2ws,
|
1590 |
+
curr_Ks,
|
1591 |
+
curr_input_sels
|
1592 |
+
+ [
|
1593 |
+
sel
|
1594 |
+
for (ind, sel) in zip(
|
1595 |
+
np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]],
|
1596 |
+
curr_test_sels,
|
1597 |
+
)
|
1598 |
+
if test_indices[ind] in camera_cond["input_indices"]
|
1599 |
+
],
|
1600 |
+
all_c2ws=camera_cond["c2w"],
|
1601 |
+
)
|
1602 |
+
samplers = create_samplers(
|
1603 |
+
options["guider_types"],
|
1604 |
+
discretization,
|
1605 |
+
[len(curr_imgs)],
|
1606 |
+
options["num_steps"],
|
1607 |
+
options["cfg_min"],
|
1608 |
+
abort_event=abort_event,
|
1609 |
+
)
|
1610 |
+
assert len(samplers) == 1
|
1611 |
+
samples = do_sample(
|
1612 |
+
model,
|
1613 |
+
ae,
|
1614 |
+
conditioner,
|
1615 |
+
denoiser,
|
1616 |
+
samplers[0],
|
1617 |
+
value_dict,
|
1618 |
+
H,
|
1619 |
+
W,
|
1620 |
+
C,
|
1621 |
+
F,
|
1622 |
+
T=len(curr_imgs),
|
1623 |
+
cfg=(
|
1624 |
+
options["cfg"][0]
|
1625 |
+
if isinstance(options["cfg"], (list, tuple))
|
1626 |
+
else options["cfg"]
|
1627 |
+
),
|
1628 |
+
**{k: options[k] for k in options if k not in ["cfg", "T"]},
|
1629 |
+
)
|
1630 |
+
samples = decode_output(
|
1631 |
+
samples, len(curr_imgs), chunk_test_sels
|
1632 |
+
) # decode into dict
|
1633 |
+
if options.get("save_first_pass", False):
|
1634 |
+
save_output(
|
1635 |
+
replace_or_include_input_for_dict(
|
1636 |
+
samples,
|
1637 |
+
chunk_test_sels,
|
1638 |
+
curr_imgs,
|
1639 |
+
curr_c2ws,
|
1640 |
+
curr_Ks,
|
1641 |
+
),
|
1642 |
+
save_path=os.path.join(save_path, "first-pass", f"forward_{i}"),
|
1643 |
+
video_save_fps=2,
|
1644 |
+
)
|
1645 |
+
extend_dict(all_samples, samples)
|
1646 |
+
all_test_inds.extend(chunk_test_inds)
|
1647 |
+
else:
|
1648 |
+
assert traj_prior_c2ws is not None, (
|
1649 |
+
"`traj_prior_c2ws` should be set when using 2-pass sampling. One "
|
1650 |
+
"potential reason is that the amount of input frames is larger than "
|
1651 |
+
"T. Set `num_prior_frames` manually to overwrite the infered stats."
|
1652 |
+
)
|
1653 |
+
traj_prior_c2ws = torch.as_tensor(
|
1654 |
+
traj_prior_c2ws,
|
1655 |
+
device=input_c2ws.device,
|
1656 |
+
dtype=input_c2ws.dtype,
|
1657 |
+
)
|
1658 |
+
|
1659 |
+
if traj_prior_Ks is None:
|
1660 |
+
traj_prior_Ks = test_Ks[:1].repeat_interleave(
|
1661 |
+
traj_prior_c2ws.shape[0], dim=0
|
1662 |
+
)
|
1663 |
+
|
1664 |
+
traj_prior_imgs = imgs.new_zeros(traj_prior_c2ws.shape[0], *imgs.shape[1:])
|
1665 |
+
traj_prior_imgs_clip = imgs_clip.new_zeros(
|
1666 |
+
traj_prior_c2ws.shape[0], *imgs_clip.shape[1:]
|
1667 |
+
)
|
1668 |
+
|
1669 |
+
# ---------------------------------- first pass ----------------------------------
|
1670 |
+
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
|
1671 |
+
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
|
1672 |
+
chunk_strategy_first_pass = options.get(
|
1673 |
+
"chunk_strategy_first_pass", "gt-nearest"
|
1674 |
+
)
|
1675 |
+
(
|
1676 |
+
_,
|
1677 |
+
input_inds_per_chunk,
|
1678 |
+
input_sels_per_chunk,
|
1679 |
+
prior_inds_per_chunk,
|
1680 |
+
prior_sels_per_chunk,
|
1681 |
+
) = chunk_input_and_test(
|
1682 |
+
T_first_pass,
|
1683 |
+
input_c2ws,
|
1684 |
+
traj_prior_c2ws,
|
1685 |
+
input_indices,
|
1686 |
+
image_cond["prior_indices"],
|
1687 |
+
options=options,
|
1688 |
+
task=task,
|
1689 |
+
chunk_strategy=chunk_strategy_first_pass,
|
1690 |
+
gt_input_inds=list(range(input_c2ws.shape[0])),
|
1691 |
+
)
|
1692 |
+
print(
|
1693 |
+
f"Two passes (first) - chunking with `{chunk_strategy_first_pass}` strategy: total "
|
1694 |
+
f"{len(input_inds_per_chunk)} forward(s) ..."
|
1695 |
+
)
|
1696 |
+
|
1697 |
+
all_samples = {}
|
1698 |
+
all_prior_inds = []
|
1699 |
+
for i, (
|
1700 |
+
chunk_input_inds,
|
1701 |
+
chunk_input_sels,
|
1702 |
+
chunk_prior_inds,
|
1703 |
+
chunk_prior_sels,
|
1704 |
+
) in tqdm(
|
1705 |
+
enumerate(
|
1706 |
+
zip(
|
1707 |
+
input_inds_per_chunk,
|
1708 |
+
input_sels_per_chunk,
|
1709 |
+
prior_inds_per_chunk,
|
1710 |
+
prior_sels_per_chunk,
|
1711 |
+
)
|
1712 |
+
),
|
1713 |
+
total=len(input_inds_per_chunk),
|
1714 |
+
leave=False,
|
1715 |
+
):
|
1716 |
+
(
|
1717 |
+
curr_input_sels,
|
1718 |
+
curr_prior_sels,
|
1719 |
+
curr_input_maps,
|
1720 |
+
curr_prior_maps,
|
1721 |
+
) = pad_indices(
|
1722 |
+
chunk_input_sels,
|
1723 |
+
chunk_prior_sels,
|
1724 |
+
T=T_first_pass,
|
1725 |
+
padding_mode=options.get("t_padding_mode", "last"),
|
1726 |
+
)
|
1727 |
+
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [
|
1728 |
+
assemble(
|
1729 |
+
input=x[chunk_input_inds],
|
1730 |
+
test=y[chunk_prior_inds],
|
1731 |
+
input_maps=curr_input_maps,
|
1732 |
+
test_maps=curr_prior_maps,
|
1733 |
+
)
|
1734 |
+
for x, y in zip(
|
1735 |
+
[
|
1736 |
+
torch.cat(
|
1737 |
+
[
|
1738 |
+
input_imgs,
|
1739 |
+
get_k_from_dict(all_samples, "samples-rgb").to(
|
1740 |
+
input_imgs.device
|
1741 |
+
),
|
1742 |
+
],
|
1743 |
+
dim=0,
|
1744 |
+
),
|
1745 |
+
torch.cat(
|
1746 |
+
[
|
1747 |
+
input_imgs_clip,
|
1748 |
+
get_k_from_dict(all_samples, "samples-rgb").to(
|
1749 |
+
input_imgs.device
|
1750 |
+
),
|
1751 |
+
],
|
1752 |
+
dim=0,
|
1753 |
+
),
|
1754 |
+
torch.cat([input_c2ws, traj_prior_c2ws[all_prior_inds]], dim=0),
|
1755 |
+
torch.cat([input_Ks, traj_prior_Ks[all_prior_inds]], dim=0),
|
1756 |
+
], # procedually append generated prior views to the input views
|
1757 |
+
[
|
1758 |
+
traj_prior_imgs,
|
1759 |
+
traj_prior_imgs_clip,
|
1760 |
+
traj_prior_c2ws,
|
1761 |
+
traj_prior_Ks,
|
1762 |
+
],
|
1763 |
+
)
|
1764 |
+
]
|
1765 |
+
value_dict = get_value_dict(
|
1766 |
+
curr_imgs.to("cuda"),
|
1767 |
+
curr_imgs_clip.to("cuda"),
|
1768 |
+
curr_input_sels,
|
1769 |
+
curr_c2ws,
|
1770 |
+
curr_Ks,
|
1771 |
+
list(range(T_first_pass)),
|
1772 |
+
all_c2ws=camera_cond["c2w"], # traj_prior_c2ws,
|
1773 |
+
)
|
1774 |
+
samplers = create_samplers(
|
1775 |
+
options["guider_types"],
|
1776 |
+
discretization,
|
1777 |
+
[T_first_pass, T_second_pass],
|
1778 |
+
options["num_steps"],
|
1779 |
+
options["cfg_min"],
|
1780 |
+
abort_event=abort_event,
|
1781 |
+
)
|
1782 |
+
samples = do_sample(
|
1783 |
+
model,
|
1784 |
+
ae,
|
1785 |
+
conditioner,
|
1786 |
+
denoiser,
|
1787 |
+
(
|
1788 |
+
samplers[1]
|
1789 |
+
if len(samplers) > 1
|
1790 |
+
and options.get("ltr_first_pass", False)
|
1791 |
+
and chunk_strategy_first_pass != "gt"
|
1792 |
+
and i > 0
|
1793 |
+
else samplers[0]
|
1794 |
+
),
|
1795 |
+
value_dict,
|
1796 |
+
H,
|
1797 |
+
W,
|
1798 |
+
C,
|
1799 |
+
F,
|
1800 |
+
cfg=(
|
1801 |
+
options["cfg"][0]
|
1802 |
+
if isinstance(options["cfg"], (list, tuple))
|
1803 |
+
else options["cfg"]
|
1804 |
+
),
|
1805 |
+
T=T_first_pass,
|
1806 |
+
global_pbar=first_pass_pbar,
|
1807 |
+
**{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]},
|
1808 |
+
)
|
1809 |
+
if samples is None:
|
1810 |
+
return
|
1811 |
+
samples = decode_output(
|
1812 |
+
samples, T_first_pass, chunk_prior_sels
|
1813 |
+
) # decode into dict
|
1814 |
+
extend_dict(all_samples, samples)
|
1815 |
+
all_prior_inds.extend(chunk_prior_inds)
|
1816 |
+
|
1817 |
+
if options.get("save_first_pass", True):
|
1818 |
+
save_output(
|
1819 |
+
all_samples,
|
1820 |
+
save_path=os.path.join(save_path, "first-pass"),
|
1821 |
+
video_save_fps=5,
|
1822 |
+
)
|
1823 |
+
video_path_0 = os.path.join(save_path, "first-pass", "samples-rgb.mp4")
|
1824 |
+
yield video_path_0
|
1825 |
+
|
1826 |
+
# ---------------------------------- second pass ----------------------------------
|
1827 |
+
prior_indices = image_cond["prior_indices"]
|
1828 |
+
assert (
|
1829 |
+
prior_indices is not None
|
1830 |
+
), "`prior_frame_indices` needs to be set if using 2-pass sampling."
|
1831 |
+
prior_argsort = np.argsort(input_indices + prior_indices).tolist()
|
1832 |
+
prior_indices = np.array(input_indices + prior_indices)[prior_argsort].tolist()
|
1833 |
+
gt_input_inds = [prior_argsort.index(i) for i in range(input_c2ws.shape[0])]
|
1834 |
+
|
1835 |
+
traj_prior_imgs = torch.cat(
|
1836 |
+
[input_imgs, get_k_from_dict(all_samples, "samples-rgb")], dim=0
|
1837 |
+
)[prior_argsort]
|
1838 |
+
traj_prior_imgs_clip = torch.cat(
|
1839 |
+
[
|
1840 |
+
input_imgs_clip,
|
1841 |
+
get_k_from_dict(all_samples, "samples-rgb"),
|
1842 |
+
],
|
1843 |
+
dim=0,
|
1844 |
+
)[prior_argsort]
|
1845 |
+
traj_prior_c2ws = torch.cat([input_c2ws, traj_prior_c2ws], dim=0)[prior_argsort]
|
1846 |
+
traj_prior_Ks = torch.cat([input_Ks, traj_prior_Ks], dim=0)[prior_argsort]
|
1847 |
+
|
1848 |
+
update_kv_for_dict(all_samples, "samples-rgb", traj_prior_imgs)
|
1849 |
+
update_kv_for_dict(all_samples, "samples-c2ws", traj_prior_c2ws)
|
1850 |
+
update_kv_for_dict(all_samples, "samples-intrinsics", traj_prior_Ks)
|
1851 |
+
|
1852 |
+
chunk_strategy = options.get("chunk_strategy", "nearest")
|
1853 |
+
(
|
1854 |
+
_,
|
1855 |
+
prior_inds_per_chunk,
|
1856 |
+
prior_sels_per_chunk,
|
1857 |
+
test_inds_per_chunk,
|
1858 |
+
test_sels_per_chunk,
|
1859 |
+
) = chunk_input_and_test(
|
1860 |
+
T_second_pass,
|
1861 |
+
traj_prior_c2ws,
|
1862 |
+
test_c2ws,
|
1863 |
+
prior_indices,
|
1864 |
+
test_indices,
|
1865 |
+
options=options,
|
1866 |
+
task=task,
|
1867 |
+
chunk_strategy=chunk_strategy,
|
1868 |
+
gt_input_inds=gt_input_inds,
|
1869 |
+
)
|
1870 |
+
print(
|
1871 |
+
f"Two passes (second) - chunking with `{chunk_strategy}` strategy: total "
|
1872 |
+
f"{len(prior_inds_per_chunk)} forward(s) ..."
|
1873 |
+
)
|
1874 |
+
|
1875 |
+
all_samples = {}
|
1876 |
+
all_test_inds = []
|
1877 |
+
for i, (
|
1878 |
+
chunk_prior_inds,
|
1879 |
+
chunk_prior_sels,
|
1880 |
+
chunk_test_inds,
|
1881 |
+
chunk_test_sels,
|
1882 |
+
) in tqdm(
|
1883 |
+
enumerate(
|
1884 |
+
zip(
|
1885 |
+
prior_inds_per_chunk,
|
1886 |
+
prior_sels_per_chunk,
|
1887 |
+
test_inds_per_chunk,
|
1888 |
+
test_sels_per_chunk,
|
1889 |
+
)
|
1890 |
+
),
|
1891 |
+
total=len(prior_inds_per_chunk),
|
1892 |
+
leave=False,
|
1893 |
+
):
|
1894 |
+
(
|
1895 |
+
curr_prior_sels,
|
1896 |
+
curr_test_sels,
|
1897 |
+
curr_prior_maps,
|
1898 |
+
curr_test_maps,
|
1899 |
+
) = pad_indices(
|
1900 |
+
chunk_prior_sels,
|
1901 |
+
chunk_test_sels,
|
1902 |
+
T=T_second_pass,
|
1903 |
+
padding_mode="last",
|
1904 |
+
)
|
1905 |
+
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [
|
1906 |
+
assemble(
|
1907 |
+
input=x[chunk_prior_inds],
|
1908 |
+
test=y[chunk_test_inds],
|
1909 |
+
input_maps=curr_prior_maps,
|
1910 |
+
test_maps=curr_test_maps,
|
1911 |
+
)
|
1912 |
+
for x, y in zip(
|
1913 |
+
[
|
1914 |
+
traj_prior_imgs,
|
1915 |
+
traj_prior_imgs_clip,
|
1916 |
+
traj_prior_c2ws,
|
1917 |
+
traj_prior_Ks,
|
1918 |
+
],
|
1919 |
+
[test_imgs, test_imgs_clip, test_c2ws, test_Ks],
|
1920 |
+
)
|
1921 |
+
]
|
1922 |
+
value_dict = get_value_dict(
|
1923 |
+
curr_imgs.to("cuda"),
|
1924 |
+
curr_imgs_clip.to("cuda"),
|
1925 |
+
curr_prior_sels,
|
1926 |
+
curr_c2ws,
|
1927 |
+
curr_Ks,
|
1928 |
+
list(range(T_second_pass)),
|
1929 |
+
all_c2ws=camera_cond["c2w"], # test_c2ws,
|
1930 |
+
)
|
1931 |
+
samples = do_sample(
|
1932 |
+
model,
|
1933 |
+
ae,
|
1934 |
+
conditioner,
|
1935 |
+
denoiser,
|
1936 |
+
samplers[1] if len(samplers) > 1 else samplers[0],
|
1937 |
+
value_dict,
|
1938 |
+
H,
|
1939 |
+
W,
|
1940 |
+
C,
|
1941 |
+
F,
|
1942 |
+
T=T_second_pass,
|
1943 |
+
cfg=(
|
1944 |
+
options["cfg"][1]
|
1945 |
+
if isinstance(options["cfg"], (list, tuple))
|
1946 |
+
and len(options["cfg"]) > 1
|
1947 |
+
else options["cfg"]
|
1948 |
+
),
|
1949 |
+
global_pbar=second_pass_pbar,
|
1950 |
+
**{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]},
|
1951 |
+
)
|
1952 |
+
if samples is None:
|
1953 |
+
return
|
1954 |
+
samples = decode_output(
|
1955 |
+
samples, T_second_pass, chunk_test_sels
|
1956 |
+
) # decode into dict
|
1957 |
+
if options.get("save_second_pass", False):
|
1958 |
+
save_output(
|
1959 |
+
replace_or_include_input_for_dict(
|
1960 |
+
samples,
|
1961 |
+
chunk_test_sels,
|
1962 |
+
curr_imgs,
|
1963 |
+
curr_c2ws,
|
1964 |
+
curr_Ks,
|
1965 |
+
),
|
1966 |
+
save_path=os.path.join(save_path, "second-pass", f"forward_{i}"),
|
1967 |
+
video_save_fps=2,
|
1968 |
+
)
|
1969 |
+
extend_dict(all_samples, samples)
|
1970 |
+
all_test_inds.extend(chunk_test_inds)
|
1971 |
+
all_samples = {
|
1972 |
+
key: value[np.argsort(all_test_inds)] for key, value in all_samples.items()
|
1973 |
+
}
|
1974 |
+
save_output(
|
1975 |
+
replace_or_include_input_for_dict(
|
1976 |
+
all_samples,
|
1977 |
+
test_indices,
|
1978 |
+
imgs.clone(),
|
1979 |
+
camera_cond["c2w"].clone(),
|
1980 |
+
camera_cond["K"].clone(),
|
1981 |
+
)
|
1982 |
+
if options.get("replace_or_include_input", False)
|
1983 |
+
else all_samples,
|
1984 |
+
save_path=save_path,
|
1985 |
+
video_save_fps=options.get("video_save_fps", 2),
|
1986 |
+
)
|
1987 |
+
video_path_1 = os.path.join(save_path, "samples-rgb.mp4")
|
1988 |
+
yield video_path_1
|
seva/geometry.py
ADDED
@@ -0,0 +1,811 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import roma
|
5 |
+
import scipy.interpolate
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
DEFAULT_FOV_RAD = 0.9424777960769379 # 54 degrees by default
|
10 |
+
|
11 |
+
|
12 |
+
def get_camera_dist(
|
13 |
+
source_c2ws: torch.Tensor, # N x 3 x 4
|
14 |
+
target_c2ws: torch.Tensor, # M x 3 x 4
|
15 |
+
mode: str = "translation",
|
16 |
+
):
|
17 |
+
if mode == "rotation":
|
18 |
+
dists = torch.acos(
|
19 |
+
(
|
20 |
+
(
|
21 |
+
torch.matmul(
|
22 |
+
source_c2ws[:, None, :3, :3],
|
23 |
+
target_c2ws[None, :, :3, :3].transpose(-1, -2),
|
24 |
+
)
|
25 |
+
.diagonal(offset=0, dim1=-2, dim2=-1)
|
26 |
+
.sum(-1)
|
27 |
+
- 1
|
28 |
+
)
|
29 |
+
/ 2
|
30 |
+
).clamp(-1, 1)
|
31 |
+
) * (180 / torch.pi)
|
32 |
+
elif mode == "translation":
|
33 |
+
dists = torch.norm(
|
34 |
+
source_c2ws[:, None, :3, 3] - target_c2ws[None, :, :3, 3], dim=-1
|
35 |
+
)
|
36 |
+
else:
|
37 |
+
raise NotImplementedError(
|
38 |
+
f"Mode {mode} is not implemented for finding nearest source indices."
|
39 |
+
)
|
40 |
+
return dists
|
41 |
+
|
42 |
+
|
43 |
+
def to_hom(X):
|
44 |
+
# get homogeneous coordinates of the input
|
45 |
+
X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1)
|
46 |
+
return X_hom
|
47 |
+
|
48 |
+
|
49 |
+
def to_hom_pose(pose):
|
50 |
+
# get homogeneous coordinates of the input pose
|
51 |
+
if pose.shape[-2:] == (3, 4):
|
52 |
+
pose_hom = torch.eye(4, device=pose.device)[None].repeat(pose.shape[0], 1, 1)
|
53 |
+
pose_hom[:, :3, :] = pose
|
54 |
+
return pose_hom
|
55 |
+
return pose
|
56 |
+
|
57 |
+
|
58 |
+
def get_default_intrinsics(
|
59 |
+
fov_rad=DEFAULT_FOV_RAD,
|
60 |
+
aspect_ratio=1.0,
|
61 |
+
):
|
62 |
+
if not isinstance(fov_rad, torch.Tensor):
|
63 |
+
fov_rad = torch.tensor(
|
64 |
+
[fov_rad] if isinstance(fov_rad, (int, float)) else fov_rad
|
65 |
+
)
|
66 |
+
if aspect_ratio >= 1.0: # W >= H
|
67 |
+
focal_x = 0.5 / torch.tan(0.5 * fov_rad)
|
68 |
+
focal_y = focal_x * aspect_ratio
|
69 |
+
else: # W < H
|
70 |
+
focal_y = 0.5 / torch.tan(0.5 * fov_rad)
|
71 |
+
focal_x = focal_y / aspect_ratio
|
72 |
+
intrinsics = focal_x.new_zeros((focal_x.shape[0], 3, 3))
|
73 |
+
intrinsics[:, torch.eye(3, device=focal_x.device, dtype=bool)] = torch.stack(
|
74 |
+
[focal_x, focal_y, torch.ones_like(focal_x)], dim=-1
|
75 |
+
)
|
76 |
+
intrinsics[:, :, -1] = torch.tensor(
|
77 |
+
[0.5, 0.5, 1.0], device=focal_x.device, dtype=focal_x.dtype
|
78 |
+
)
|
79 |
+
return intrinsics
|
80 |
+
|
81 |
+
|
82 |
+
def get_image_grid(img_h, img_w):
|
83 |
+
# add 0.5 is VERY important especially when your img_h and img_w
|
84 |
+
# is not very large (e.g., 72)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
85 |
+
y_range = torch.arange(img_h, dtype=torch.float32).add_(0.5)
|
86 |
+
x_range = torch.arange(img_w, dtype=torch.float32).add_(0.5)
|
87 |
+
Y, X = torch.meshgrid(y_range, x_range, indexing="ij") # [H,W]
|
88 |
+
xy_grid = torch.stack([X, Y], dim=-1).view(-1, 2) # [HW,2]
|
89 |
+
return to_hom(xy_grid) # [HW,3]
|
90 |
+
|
91 |
+
|
92 |
+
def img2cam(X, cam_intr):
|
93 |
+
return X @ cam_intr.inverse().transpose(-1, -2)
|
94 |
+
|
95 |
+
|
96 |
+
def cam2world(X, pose):
|
97 |
+
X_hom = to_hom(X)
|
98 |
+
pose_inv = torch.linalg.inv(to_hom_pose(pose))[..., :3, :4]
|
99 |
+
return X_hom @ pose_inv.transpose(-1, -2)
|
100 |
+
|
101 |
+
|
102 |
+
def get_center_and_ray(
|
103 |
+
img_h, img_w, pose, intr, zero_center_for_debugging=False
|
104 |
+
): # [HW,2]
|
105 |
+
# given the intrinsic/extrinsic matrices, get the camera center and ray directions]
|
106 |
+
# assert(opt.camera.model=="perspective")
|
107 |
+
|
108 |
+
# compute center and ray
|
109 |
+
grid_img = get_image_grid(img_h, img_w) # [HW,3]
|
110 |
+
grid_3D_cam = img2cam(grid_img.to(intr.device), intr.float()) # [B,HW,3]
|
111 |
+
center_3D_cam = torch.zeros_like(grid_3D_cam) # [B,HW,3]
|
112 |
+
|
113 |
+
# transform from camera to world coordinates
|
114 |
+
grid_3D = cam2world(grid_3D_cam, pose) # [B,HW,3]
|
115 |
+
center_3D = cam2world(center_3D_cam, pose) # [B,HW,3]
|
116 |
+
ray = grid_3D - center_3D # [B,HW,3]
|
117 |
+
|
118 |
+
return center_3D_cam if zero_center_for_debugging else center_3D, ray, grid_3D_cam
|
119 |
+
|
120 |
+
|
121 |
+
def get_plucker_coordinates(
|
122 |
+
extrinsics_src,
|
123 |
+
extrinsics,
|
124 |
+
intrinsics=None,
|
125 |
+
fov_rad=DEFAULT_FOV_RAD,
|
126 |
+
mode="plucker",
|
127 |
+
rel_zero_translation=True,
|
128 |
+
zero_center_for_debugging=False,
|
129 |
+
target_size=[72, 72], # 576-size image
|
130 |
+
return_grid_cam=False, # save for later use if want restore
|
131 |
+
):
|
132 |
+
if intrinsics is None:
|
133 |
+
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device)
|
134 |
+
else:
|
135 |
+
# for some data preprocessed in the early stage (e.g., MVI and CO3D),
|
136 |
+
# intrinsics are expressed in raw pixel space (e.g., 576x576) instead
|
137 |
+
# of normalized image coordinates
|
138 |
+
if not (
|
139 |
+
torch.all(intrinsics[:, :2, -1] >= 0)
|
140 |
+
and torch.all(intrinsics[:, :2, -1] <= 1)
|
141 |
+
):
|
142 |
+
intrinsics[:, :2] /= intrinsics.new_tensor(target_size).view(1, -1, 1) * 8
|
143 |
+
# you should ensure the intrisics are expressed in
|
144 |
+
# resolution-independent normalized image coordinates just performing a
|
145 |
+
# very simple verification here checking if principal points are
|
146 |
+
# between 0 and 1
|
147 |
+
assert (
|
148 |
+
torch.all(intrinsics[:, :2, -1] >= 0)
|
149 |
+
and torch.all(intrinsics[:, :2, -1] <= 1)
|
150 |
+
), "Intrinsics should be expressed in resolution-independent normalized image coordinates."
|
151 |
+
|
152 |
+
c2w_src = torch.linalg.inv(extrinsics_src)
|
153 |
+
if not rel_zero_translation:
|
154 |
+
c2w_src[:3, 3] = c2w_src[3, :3] = 0.0
|
155 |
+
# transform coordinates from the source camera's coordinate system to the coordinate system of the respective camera
|
156 |
+
extrinsics_rel = torch.einsum(
|
157 |
+
"vnm,vmp->vnp", extrinsics, c2w_src[None].repeat(extrinsics.shape[0], 1, 1)
|
158 |
+
)
|
159 |
+
|
160 |
+
intrinsics[:, :2] *= extrinsics.new_tensor(
|
161 |
+
[
|
162 |
+
target_size[1], # w
|
163 |
+
target_size[0], # h
|
164 |
+
]
|
165 |
+
).view(1, -1, 1)
|
166 |
+
centers, rays, grid_cam = get_center_and_ray(
|
167 |
+
img_h=target_size[0],
|
168 |
+
img_w=target_size[1],
|
169 |
+
pose=extrinsics_rel[:, :3, :],
|
170 |
+
intr=intrinsics,
|
171 |
+
zero_center_for_debugging=zero_center_for_debugging,
|
172 |
+
)
|
173 |
+
|
174 |
+
if mode == "plucker" or "v1" in mode:
|
175 |
+
rays = torch.nn.functional.normalize(rays, dim=-1)
|
176 |
+
plucker = torch.cat((rays, torch.cross(centers, rays, dim=-1)), dim=-1)
|
177 |
+
else:
|
178 |
+
raise ValueError(f"Unknown Plucker coordinate mode: {mode}")
|
179 |
+
|
180 |
+
plucker = plucker.permute(0, 2, 1).reshape(plucker.shape[0], -1, *target_size)
|
181 |
+
if return_grid_cam:
|
182 |
+
return plucker, grid_cam.reshape(-1, *target_size, 3)
|
183 |
+
return plucker
|
184 |
+
|
185 |
+
|
186 |
+
def rt_to_mat4(
|
187 |
+
R: torch.Tensor, t: torch.Tensor, s: torch.Tensor | None = None
|
188 |
+
) -> torch.Tensor:
|
189 |
+
"""
|
190 |
+
Args:
|
191 |
+
R (torch.Tensor): (..., 3, 3).
|
192 |
+
t (torch.Tensor): (..., 3).
|
193 |
+
s (torch.Tensor): (...,).
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
torch.Tensor: (..., 4, 4)
|
197 |
+
"""
|
198 |
+
mat34 = torch.cat([R, t[..., None]], dim=-1)
|
199 |
+
if s is None:
|
200 |
+
bottom = (
|
201 |
+
mat34.new_tensor([[0.0, 0.0, 0.0, 1.0]])
|
202 |
+
.reshape((1,) * (mat34.dim() - 2) + (1, 4))
|
203 |
+
.expand(mat34.shape[:-2] + (1, 4))
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
bottom = F.pad(1.0 / s[..., None, None], (3, 0), value=0.0)
|
207 |
+
mat4 = torch.cat([mat34, bottom], dim=-2)
|
208 |
+
return mat4
|
209 |
+
|
210 |
+
|
211 |
+
def get_preset_pose_fov(
|
212 |
+
option: Literal[
|
213 |
+
"orbit",
|
214 |
+
"spiral",
|
215 |
+
"lemniscate",
|
216 |
+
"zoom-in",
|
217 |
+
"zoom-out",
|
218 |
+
"dolly zoom-in",
|
219 |
+
"dolly zoom-out",
|
220 |
+
"move-forward",
|
221 |
+
"move-backward",
|
222 |
+
"move-up",
|
223 |
+
"move-down",
|
224 |
+
"move-left",
|
225 |
+
"move-right",
|
226 |
+
"roll",
|
227 |
+
],
|
228 |
+
num_frames: int,
|
229 |
+
start_w2c: torch.Tensor,
|
230 |
+
look_at: torch.Tensor,
|
231 |
+
up_direction: torch.Tensor | None = None,
|
232 |
+
fov: float = DEFAULT_FOV_RAD,
|
233 |
+
spiral_radii: list[float] = [0.5, 0.5, 0.2],
|
234 |
+
zoom_factor: float | None = None,
|
235 |
+
):
|
236 |
+
poses = fovs = None
|
237 |
+
if option == "orbit":
|
238 |
+
poses = torch.linalg.inv(
|
239 |
+
get_arc_horizontal_w2cs(
|
240 |
+
start_w2c,
|
241 |
+
look_at,
|
242 |
+
up_direction,
|
243 |
+
num_frames=num_frames,
|
244 |
+
endpoint=False,
|
245 |
+
)
|
246 |
+
).numpy()
|
247 |
+
fovs = np.full((num_frames,), fov)
|
248 |
+
elif option == "spiral":
|
249 |
+
poses = generate_spiral_path(
|
250 |
+
torch.linalg.inv(start_w2c)[None].numpy() @ np.diagflat([1, -1, -1, 1]),
|
251 |
+
np.array([1, 5]),
|
252 |
+
n_frames=num_frames,
|
253 |
+
n_rots=2,
|
254 |
+
zrate=0.5,
|
255 |
+
radii=spiral_radii,
|
256 |
+
endpoint=False,
|
257 |
+
) @ np.diagflat([1, -1, -1, 1])
|
258 |
+
poses = np.concatenate(
|
259 |
+
[
|
260 |
+
poses,
|
261 |
+
np.array([0.0, 0.0, 0.0, 1.0])[None, None].repeat(len(poses), 0),
|
262 |
+
],
|
263 |
+
1,
|
264 |
+
)
|
265 |
+
# We want the spiral trajectory to always start from start_w2c. Thus we
|
266 |
+
# apply the relative pose to get the final trajectory.
|
267 |
+
poses = (
|
268 |
+
np.linalg.inv(start_w2c.numpy())[None] @ np.linalg.inv(poses[:1]) @ poses
|
269 |
+
)
|
270 |
+
fovs = np.full((num_frames,), fov)
|
271 |
+
elif option == "lemniscate":
|
272 |
+
poses = torch.linalg.inv(
|
273 |
+
get_lemniscate_w2cs(
|
274 |
+
start_w2c,
|
275 |
+
look_at,
|
276 |
+
up_direction,
|
277 |
+
num_frames,
|
278 |
+
degree=60.0,
|
279 |
+
endpoint=False,
|
280 |
+
)
|
281 |
+
).numpy()
|
282 |
+
fovs = np.full((num_frames,), fov)
|
283 |
+
elif option == "roll":
|
284 |
+
poses = torch.linalg.inv(
|
285 |
+
get_roll_w2cs(
|
286 |
+
start_w2c,
|
287 |
+
look_at,
|
288 |
+
None,
|
289 |
+
num_frames,
|
290 |
+
degree=360.0,
|
291 |
+
endpoint=False,
|
292 |
+
)
|
293 |
+
).numpy()
|
294 |
+
fovs = np.full((num_frames,), fov)
|
295 |
+
elif option in [
|
296 |
+
"dolly zoom-in",
|
297 |
+
"dolly zoom-out",
|
298 |
+
"zoom-in",
|
299 |
+
"zoom-out",
|
300 |
+
]:
|
301 |
+
if option.startswith("dolly"):
|
302 |
+
direction = "backward" if option == "dolly zoom-in" else "forward"
|
303 |
+
poses = torch.linalg.inv(
|
304 |
+
get_moving_w2cs(
|
305 |
+
start_w2c,
|
306 |
+
look_at,
|
307 |
+
up_direction,
|
308 |
+
num_frames,
|
309 |
+
endpoint=True,
|
310 |
+
direction=direction,
|
311 |
+
)
|
312 |
+
).numpy()
|
313 |
+
else:
|
314 |
+
poses = torch.linalg.inv(start_w2c)[None].repeat(num_frames, 1, 1).numpy()
|
315 |
+
fov_rad_start = fov
|
316 |
+
if zoom_factor is None:
|
317 |
+
zoom_factor = 0.28 if option.endswith("zoom-in") else 1.5
|
318 |
+
fov_rad_end = zoom_factor * fov
|
319 |
+
fovs = (
|
320 |
+
np.linspace(0, 1, num_frames) * (fov_rad_end - fov_rad_start)
|
321 |
+
+ fov_rad_start
|
322 |
+
)
|
323 |
+
elif option in [
|
324 |
+
"move-forward",
|
325 |
+
"move-backward",
|
326 |
+
"move-up",
|
327 |
+
"move-down",
|
328 |
+
"move-left",
|
329 |
+
"move-right",
|
330 |
+
]:
|
331 |
+
poses = torch.linalg.inv(
|
332 |
+
get_moving_w2cs(
|
333 |
+
start_w2c,
|
334 |
+
look_at,
|
335 |
+
up_direction,
|
336 |
+
num_frames,
|
337 |
+
endpoint=True,
|
338 |
+
direction=option.removeprefix("move-"),
|
339 |
+
)
|
340 |
+
).numpy()
|
341 |
+
fovs = np.full((num_frames,), fov)
|
342 |
+
else:
|
343 |
+
raise ValueError(f"Unknown preset option {option}.")
|
344 |
+
|
345 |
+
return poses, fovs
|
346 |
+
|
347 |
+
|
348 |
+
def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor:
|
349 |
+
"""Triangulate a set of rays to find a single lookat point.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
origins (torch.Tensor): A (N, 3) array of ray origins.
|
353 |
+
viewdirs (torch.Tensor): A (N, 3) array of ray view directions.
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
torch.Tensor: A (3,) lookat point.
|
357 |
+
"""
|
358 |
+
|
359 |
+
viewdirs = torch.nn.functional.normalize(viewdirs, dim=-1)
|
360 |
+
eye = torch.eye(3, device=origins.device, dtype=origins.dtype)[None]
|
361 |
+
# Calculate projection matrix I - rr^T
|
362 |
+
I_min_cov = eye - (viewdirs[..., None] * viewdirs[..., None, :])
|
363 |
+
# Compute sum of projections
|
364 |
+
sum_proj = I_min_cov.matmul(origins[..., None]).sum(dim=-3)
|
365 |
+
# Solve for the intersection point using least squares
|
366 |
+
lookat = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
|
367 |
+
# Check NaNs.
|
368 |
+
assert not torch.any(torch.isnan(lookat))
|
369 |
+
return lookat
|
370 |
+
|
371 |
+
|
372 |
+
def get_lookat_w2cs(
|
373 |
+
positions: torch.Tensor,
|
374 |
+
lookat: torch.Tensor,
|
375 |
+
up: torch.Tensor,
|
376 |
+
face_off: bool = False,
|
377 |
+
):
|
378 |
+
"""
|
379 |
+
Args:
|
380 |
+
positions: (N, 3) tensor of camera positions
|
381 |
+
lookat: (3,) tensor of lookat point
|
382 |
+
up: (3,) or (N, 3) tensor of up vector
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
w2cs: (N, 3, 3) tensor of world to camera rotation matrices
|
386 |
+
"""
|
387 |
+
forward_vectors = F.normalize(lookat - positions, dim=-1)
|
388 |
+
if face_off:
|
389 |
+
forward_vectors = -forward_vectors
|
390 |
+
if up.dim() == 1:
|
391 |
+
up = up[None]
|
392 |
+
right_vectors = F.normalize(torch.cross(forward_vectors, up, dim=-1), dim=-1)
|
393 |
+
down_vectors = F.normalize(
|
394 |
+
torch.cross(forward_vectors, right_vectors, dim=-1), dim=-1
|
395 |
+
)
|
396 |
+
Rs = torch.stack([right_vectors, down_vectors, forward_vectors], dim=-1)
|
397 |
+
w2cs = torch.linalg.inv(rt_to_mat4(Rs, positions))
|
398 |
+
return w2cs
|
399 |
+
|
400 |
+
|
401 |
+
def get_arc_horizontal_w2cs(
|
402 |
+
ref_w2c: torch.Tensor,
|
403 |
+
lookat: torch.Tensor,
|
404 |
+
up: torch.Tensor | None,
|
405 |
+
num_frames: int,
|
406 |
+
clockwise: bool = True,
|
407 |
+
face_off: bool = False,
|
408 |
+
endpoint: bool = False,
|
409 |
+
degree: float = 360.0,
|
410 |
+
ref_up_shift: float = 0.0,
|
411 |
+
ref_radius_scale: float = 1.0,
|
412 |
+
**_,
|
413 |
+
) -> torch.Tensor:
|
414 |
+
ref_c2w = torch.linalg.inv(ref_w2c)
|
415 |
+
ref_position = ref_c2w[:3, 3]
|
416 |
+
if up is None:
|
417 |
+
up = -ref_c2w[:3, 1]
|
418 |
+
assert up is not None
|
419 |
+
ref_position += up * ref_up_shift
|
420 |
+
ref_position *= ref_radius_scale
|
421 |
+
thetas = (
|
422 |
+
torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device)
|
423 |
+
if endpoint
|
424 |
+
else torch.linspace(
|
425 |
+
0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device
|
426 |
+
)[:-1]
|
427 |
+
)
|
428 |
+
if not clockwise:
|
429 |
+
thetas = -thetas
|
430 |
+
positions = (
|
431 |
+
torch.einsum(
|
432 |
+
"nij,j->ni",
|
433 |
+
roma.rotvec_to_rotmat(thetas[:, None] * up[None]),
|
434 |
+
ref_position - lookat,
|
435 |
+
)
|
436 |
+
+ lookat
|
437 |
+
)
|
438 |
+
return get_lookat_w2cs(positions, lookat, up, face_off=face_off)
|
439 |
+
|
440 |
+
|
441 |
+
def get_lemniscate_w2cs(
|
442 |
+
ref_w2c: torch.Tensor,
|
443 |
+
lookat: torch.Tensor,
|
444 |
+
up: torch.Tensor | None,
|
445 |
+
num_frames: int,
|
446 |
+
degree: float,
|
447 |
+
endpoint: bool = False,
|
448 |
+
**_,
|
449 |
+
) -> torch.Tensor:
|
450 |
+
ref_c2w = torch.linalg.inv(ref_w2c)
|
451 |
+
a = torch.linalg.norm(ref_c2w[:3, 3] - lookat) * np.tan(degree / 360 * np.pi)
|
452 |
+
# Lemniscate curve in camera space. Starting at the origin.
|
453 |
+
thetas = (
|
454 |
+
torch.linspace(0, 2 * torch.pi, num_frames, device=ref_w2c.device)
|
455 |
+
if endpoint
|
456 |
+
else torch.linspace(0, 2 * torch.pi, num_frames + 1, device=ref_w2c.device)[:-1]
|
457 |
+
) + torch.pi / 2
|
458 |
+
positions = torch.stack(
|
459 |
+
[
|
460 |
+
a * torch.cos(thetas) / (1 + torch.sin(thetas) ** 2),
|
461 |
+
a * torch.cos(thetas) * torch.sin(thetas) / (1 + torch.sin(thetas) ** 2),
|
462 |
+
torch.zeros(num_frames, device=ref_w2c.device),
|
463 |
+
],
|
464 |
+
dim=-1,
|
465 |
+
)
|
466 |
+
# Transform to world space.
|
467 |
+
positions = torch.einsum(
|
468 |
+
"ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
|
469 |
+
)
|
470 |
+
if up is None:
|
471 |
+
up = -ref_c2w[:3, 1]
|
472 |
+
assert up is not None
|
473 |
+
return get_lookat_w2cs(positions, lookat, up)
|
474 |
+
|
475 |
+
|
476 |
+
def get_moving_w2cs(
|
477 |
+
ref_w2c: torch.Tensor,
|
478 |
+
lookat: torch.Tensor,
|
479 |
+
up: torch.Tensor | None,
|
480 |
+
num_frames: int,
|
481 |
+
endpoint: bool = False,
|
482 |
+
direction: str = "forward",
|
483 |
+
tilt_xy: torch.Tensor = None,
|
484 |
+
):
|
485 |
+
"""
|
486 |
+
Args:
|
487 |
+
ref_w2c: (4, 4) tensor of the reference wolrd-to-camera matrix
|
488 |
+
lookat: (3,) tensor of lookat point
|
489 |
+
up: (3,) tensor of up vector
|
490 |
+
|
491 |
+
Returns:
|
492 |
+
w2cs: (N, 3, 3) tensor of world to camera rotation matrices
|
493 |
+
"""
|
494 |
+
ref_c2w = torch.linalg.inv(ref_w2c)
|
495 |
+
ref_position = ref_c2w[:3, -1]
|
496 |
+
if up is None:
|
497 |
+
up = -ref_c2w[:3, 1]
|
498 |
+
|
499 |
+
direction_vectors = {
|
500 |
+
"forward": (lookat - ref_position).clone(),
|
501 |
+
"backward": -(lookat - ref_position).clone(),
|
502 |
+
"up": up.clone(),
|
503 |
+
"down": -up.clone(),
|
504 |
+
"right": torch.cross((lookat - ref_position), up, dim=0),
|
505 |
+
"left": -torch.cross((lookat - ref_position), up, dim=0),
|
506 |
+
}
|
507 |
+
if direction not in direction_vectors:
|
508 |
+
raise ValueError(
|
509 |
+
f"Invalid direction: {direction}. Must be one of {list(direction_vectors.keys())}"
|
510 |
+
)
|
511 |
+
|
512 |
+
positions = ref_position + (
|
513 |
+
F.normalize(direction_vectors[direction], dim=0)
|
514 |
+
* (
|
515 |
+
torch.linspace(0, 0.99, num_frames, device=ref_w2c.device)
|
516 |
+
if endpoint
|
517 |
+
else torch.linspace(0, 1, num_frames + 1, device=ref_w2c.device)[:-1]
|
518 |
+
)[:, None]
|
519 |
+
)
|
520 |
+
|
521 |
+
if tilt_xy is not None:
|
522 |
+
positions[:, :2] += tilt_xy
|
523 |
+
|
524 |
+
return get_lookat_w2cs(positions, lookat, up)
|
525 |
+
|
526 |
+
|
527 |
+
def get_roll_w2cs(
|
528 |
+
ref_w2c: torch.Tensor,
|
529 |
+
lookat: torch.Tensor,
|
530 |
+
up: torch.Tensor | None,
|
531 |
+
num_frames: int,
|
532 |
+
endpoint: bool = False,
|
533 |
+
degree: float = 360.0,
|
534 |
+
**_,
|
535 |
+
) -> torch.Tensor:
|
536 |
+
ref_c2w = torch.linalg.inv(ref_w2c)
|
537 |
+
ref_position = ref_c2w[:3, 3]
|
538 |
+
if up is None:
|
539 |
+
up = -ref_c2w[:3, 1] # Infer the up vector from the reference.
|
540 |
+
|
541 |
+
# Create vertical angles
|
542 |
+
thetas = (
|
543 |
+
torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device)
|
544 |
+
if endpoint
|
545 |
+
else torch.linspace(
|
546 |
+
0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device
|
547 |
+
)[:-1]
|
548 |
+
)[:, None]
|
549 |
+
|
550 |
+
lookat_vector = F.normalize(lookat[None].float(), dim=-1)
|
551 |
+
up = up[None]
|
552 |
+
up = (
|
553 |
+
up * torch.cos(thetas)
|
554 |
+
+ torch.cross(lookat_vector, up) * torch.sin(thetas)
|
555 |
+
+ lookat_vector
|
556 |
+
* torch.einsum("ij,ij->i", lookat_vector, up)[:, None]
|
557 |
+
* (1 - torch.cos(thetas))
|
558 |
+
)
|
559 |
+
|
560 |
+
# Normalize the camera orientation
|
561 |
+
return get_lookat_w2cs(ref_position[None].repeat(num_frames, 1), lookat, up)
|
562 |
+
|
563 |
+
|
564 |
+
def normalize(x):
|
565 |
+
"""Normalization helper function."""
|
566 |
+
return x / np.linalg.norm(x)
|
567 |
+
|
568 |
+
|
569 |
+
def viewmatrix(lookdir, up, position, subtract_position=False):
|
570 |
+
"""Construct lookat view matrix."""
|
571 |
+
vec2 = normalize((lookdir - position) if subtract_position else lookdir)
|
572 |
+
vec0 = normalize(np.cross(up, vec2))
|
573 |
+
vec1 = normalize(np.cross(vec2, vec0))
|
574 |
+
m = np.stack([vec0, vec1, vec2, position], axis=1)
|
575 |
+
return m
|
576 |
+
|
577 |
+
|
578 |
+
def poses_avg(poses):
|
579 |
+
"""New pose using average position, z-axis, and up vector of input poses."""
|
580 |
+
position = poses[:, :3, 3].mean(0)
|
581 |
+
z_axis = poses[:, :3, 2].mean(0)
|
582 |
+
up = poses[:, :3, 1].mean(0)
|
583 |
+
cam2world = viewmatrix(z_axis, up, position)
|
584 |
+
return cam2world
|
585 |
+
|
586 |
+
|
587 |
+
def generate_spiral_path(
|
588 |
+
poses, bounds, n_frames=120, n_rots=2, zrate=0.5, endpoint=False, radii=None
|
589 |
+
):
|
590 |
+
"""Calculates a forward facing spiral path for rendering."""
|
591 |
+
# Find a reasonable 'focus depth' for this dataset as a weighted average
|
592 |
+
# of near and far bounds in disparity space.
|
593 |
+
close_depth, inf_depth = bounds.min() * 0.9, bounds.max() * 5.0
|
594 |
+
dt = 0.75
|
595 |
+
focal = 1 / ((1 - dt) / close_depth + dt / inf_depth)
|
596 |
+
|
597 |
+
# Get radii for spiral path using 90th percentile of camera positions.
|
598 |
+
positions = poses[:, :3, 3]
|
599 |
+
if radii is None:
|
600 |
+
radii = np.percentile(np.abs(positions), 90, 0)
|
601 |
+
radii = np.concatenate([radii, [1.0]])
|
602 |
+
|
603 |
+
# Generate poses for spiral path.
|
604 |
+
render_poses = []
|
605 |
+
cam2world = poses_avg(poses)
|
606 |
+
up = poses[:, :3, 1].mean(0)
|
607 |
+
for theta in np.linspace(0.0, 2.0 * np.pi * n_rots, n_frames, endpoint=endpoint):
|
608 |
+
t = radii * [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.0]
|
609 |
+
position = cam2world @ t
|
610 |
+
lookat = cam2world @ [0, 0, -focal, 1.0]
|
611 |
+
z_axis = position - lookat
|
612 |
+
render_poses.append(viewmatrix(z_axis, up, position))
|
613 |
+
render_poses = np.stack(render_poses, axis=0)
|
614 |
+
return render_poses
|
615 |
+
|
616 |
+
|
617 |
+
def generate_interpolated_path(
|
618 |
+
poses: np.ndarray,
|
619 |
+
n_interp: int,
|
620 |
+
spline_degree: int = 5,
|
621 |
+
smoothness: float = 0.03,
|
622 |
+
rot_weight: float = 0.1,
|
623 |
+
endpoint: bool = False,
|
624 |
+
):
|
625 |
+
"""Creates a smooth spline path between input keyframe camera poses.
|
626 |
+
|
627 |
+
Spline is calculated with poses in format (position, lookat-point, up-point).
|
628 |
+
|
629 |
+
Args:
|
630 |
+
poses: (n, 3, 4) array of input pose keyframes.
|
631 |
+
n_interp: returned path will have n_interp * (n - 1) total poses.
|
632 |
+
spline_degree: polynomial degree of B-spline.
|
633 |
+
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
|
634 |
+
rot_weight: relative weighting of rotation/translation in spline solve.
|
635 |
+
|
636 |
+
Returns:
|
637 |
+
Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
|
638 |
+
"""
|
639 |
+
|
640 |
+
def poses_to_points(poses, dist):
|
641 |
+
"""Converts from pose matrices to (position, lookat, up) format."""
|
642 |
+
pos = poses[:, :3, -1]
|
643 |
+
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
|
644 |
+
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
|
645 |
+
return np.stack([pos, lookat, up], 1)
|
646 |
+
|
647 |
+
def points_to_poses(points):
|
648 |
+
"""Converts from (position, lookat, up) format to pose matrices."""
|
649 |
+
return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])
|
650 |
+
|
651 |
+
def interp(points, n, k, s):
|
652 |
+
"""Runs multidimensional B-spline interpolation on the input points."""
|
653 |
+
sh = points.shape
|
654 |
+
pts = np.reshape(points, (sh[0], -1))
|
655 |
+
k = min(k, sh[0] - 1)
|
656 |
+
tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
|
657 |
+
u = np.linspace(0, 1, n, endpoint=endpoint)
|
658 |
+
new_points = np.array(scipy.interpolate.splev(u, tck))
|
659 |
+
new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
|
660 |
+
return new_points
|
661 |
+
|
662 |
+
points = poses_to_points(poses, dist=rot_weight)
|
663 |
+
new_points = interp(
|
664 |
+
points, n_interp * (points.shape[0] - 1), k=spline_degree, s=smoothness
|
665 |
+
)
|
666 |
+
return points_to_poses(new_points)
|
667 |
+
|
668 |
+
|
669 |
+
def similarity_from_cameras(c2w, strict_scaling=False, center_method="focus"):
|
670 |
+
"""
|
671 |
+
reference: nerf-factory
|
672 |
+
Get a similarity transform to normalize dataset
|
673 |
+
from c2w (OpenCV convention) cameras
|
674 |
+
:param c2w: (N, 4)
|
675 |
+
:return T (4,4) , scale (float)
|
676 |
+
"""
|
677 |
+
t = c2w[:, :3, 3]
|
678 |
+
R = c2w[:, :3, :3]
|
679 |
+
|
680 |
+
# (1) Rotate the world so that z+ is the up axis
|
681 |
+
# we estimate the up axis by averaging the camera up axes
|
682 |
+
ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1)
|
683 |
+
world_up = np.mean(ups, axis=0)
|
684 |
+
world_up /= np.linalg.norm(world_up)
|
685 |
+
|
686 |
+
up_camspace = np.array([0.0, -1.0, 0.0])
|
687 |
+
c = (up_camspace * world_up).sum()
|
688 |
+
cross = np.cross(world_up, up_camspace)
|
689 |
+
skew = np.array(
|
690 |
+
[
|
691 |
+
[0.0, -cross[2], cross[1]],
|
692 |
+
[cross[2], 0.0, -cross[0]],
|
693 |
+
[-cross[1], cross[0], 0.0],
|
694 |
+
]
|
695 |
+
)
|
696 |
+
if c > -1:
|
697 |
+
R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c)
|
698 |
+
else:
|
699 |
+
# In the unlikely case the original data has y+ up axis,
|
700 |
+
# rotate 180-deg about x axis
|
701 |
+
R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
|
702 |
+
|
703 |
+
# R_align = np.eye(3) # DEBUG
|
704 |
+
R = R_align @ R
|
705 |
+
fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1)
|
706 |
+
t = (R_align @ t[..., None])[..., 0]
|
707 |
+
|
708 |
+
# (2) Recenter the scene.
|
709 |
+
if center_method == "focus":
|
710 |
+
# find the closest point to the origin for each camera's center ray
|
711 |
+
nearest = t + (fwds * -t).sum(-1)[:, None] * fwds
|
712 |
+
translate = -np.median(nearest, axis=0)
|
713 |
+
elif center_method == "poses":
|
714 |
+
# use center of the camera positions
|
715 |
+
translate = -np.median(t, axis=0)
|
716 |
+
else:
|
717 |
+
raise ValueError(f"Unknown center_method {center_method}")
|
718 |
+
|
719 |
+
transform = np.eye(4)
|
720 |
+
transform[:3, 3] = translate
|
721 |
+
transform[:3, :3] = R_align
|
722 |
+
|
723 |
+
# (3) Rescale the scene using camera distances
|
724 |
+
scale_fn = np.max if strict_scaling else np.median
|
725 |
+
inv_scale = scale_fn(np.linalg.norm(t + translate, axis=-1))
|
726 |
+
if inv_scale == 0:
|
727 |
+
inv_scale = 1.0
|
728 |
+
scale = 1.0 / inv_scale
|
729 |
+
transform[:3, :] *= scale
|
730 |
+
|
731 |
+
return transform
|
732 |
+
|
733 |
+
|
734 |
+
def align_principle_axes(point_cloud):
|
735 |
+
# Compute centroid
|
736 |
+
centroid = np.median(point_cloud, axis=0)
|
737 |
+
|
738 |
+
# Translate point cloud to centroid
|
739 |
+
translated_point_cloud = point_cloud - centroid
|
740 |
+
|
741 |
+
# Compute covariance matrix
|
742 |
+
covariance_matrix = np.cov(translated_point_cloud, rowvar=False)
|
743 |
+
|
744 |
+
# Compute eigenvectors and eigenvalues
|
745 |
+
eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
|
746 |
+
|
747 |
+
# Sort eigenvectors by eigenvalues (descending order) so that the z-axis
|
748 |
+
# is the principal axis with the smallest eigenvalue.
|
749 |
+
sort_indices = eigenvalues.argsort()[::-1]
|
750 |
+
eigenvectors = eigenvectors[:, sort_indices]
|
751 |
+
|
752 |
+
# Check orientation of eigenvectors. If the determinant of the eigenvectors is
|
753 |
+
# negative, then we need to flip the sign of one of the eigenvectors.
|
754 |
+
if np.linalg.det(eigenvectors) < 0:
|
755 |
+
eigenvectors[:, 0] *= -1
|
756 |
+
|
757 |
+
# Create rotation matrix
|
758 |
+
rotation_matrix = eigenvectors.T
|
759 |
+
|
760 |
+
# Create SE(3) matrix (4x4 transformation matrix)
|
761 |
+
transform = np.eye(4)
|
762 |
+
transform[:3, :3] = rotation_matrix
|
763 |
+
transform[:3, 3] = -rotation_matrix @ centroid
|
764 |
+
|
765 |
+
return transform
|
766 |
+
|
767 |
+
|
768 |
+
def transform_points(matrix, points):
|
769 |
+
"""Transform points using a SE(4) matrix.
|
770 |
+
|
771 |
+
Args:
|
772 |
+
matrix: 4x4 SE(4) matrix
|
773 |
+
points: Nx3 array of points
|
774 |
+
|
775 |
+
Returns:
|
776 |
+
Nx3 array of transformed points
|
777 |
+
"""
|
778 |
+
assert matrix.shape == (4, 4)
|
779 |
+
assert len(points.shape) == 2 and points.shape[1] == 3
|
780 |
+
return points @ matrix[:3, :3].T + matrix[:3, 3]
|
781 |
+
|
782 |
+
|
783 |
+
def transform_cameras(matrix, camtoworlds):
|
784 |
+
"""Transform cameras using a SE(4) matrix.
|
785 |
+
|
786 |
+
Args:
|
787 |
+
matrix: 4x4 SE(4) matrix
|
788 |
+
camtoworlds: Nx4x4 array of camera-to-world matrices
|
789 |
+
|
790 |
+
Returns:
|
791 |
+
Nx4x4 array of transformed camera-to-world matrices
|
792 |
+
"""
|
793 |
+
assert matrix.shape == (4, 4)
|
794 |
+
assert len(camtoworlds.shape) == 3 and camtoworlds.shape[1:] == (4, 4)
|
795 |
+
camtoworlds = np.einsum("nij, ki -> nkj", camtoworlds, matrix)
|
796 |
+
scaling = np.linalg.norm(camtoworlds[:, 0, :3], axis=1)
|
797 |
+
camtoworlds[:, :3, :3] = camtoworlds[:, :3, :3] / scaling[:, None, None]
|
798 |
+
return camtoworlds
|
799 |
+
|
800 |
+
|
801 |
+
def normalize_scene(camtoworlds, points=None, camera_center_method="focus"):
|
802 |
+
T1 = similarity_from_cameras(camtoworlds, center_method=camera_center_method)
|
803 |
+
camtoworlds = transform_cameras(T1, camtoworlds)
|
804 |
+
if points is not None:
|
805 |
+
points = transform_points(T1, points)
|
806 |
+
T2 = align_principle_axes(points)
|
807 |
+
camtoworlds = transform_cameras(T2, camtoworlds)
|
808 |
+
points = transform_points(T2, points)
|
809 |
+
return camtoworlds, points, T2 @ T1
|
810 |
+
else:
|
811 |
+
return camtoworlds, T1
|
seva/gui.py
ADDED
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import colorsys
|
2 |
+
import dataclasses
|
3 |
+
import threading
|
4 |
+
import time
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import scipy
|
9 |
+
import splines
|
10 |
+
import splines.quaternion
|
11 |
+
import torch
|
12 |
+
import viser
|
13 |
+
import viser.transforms as vt
|
14 |
+
|
15 |
+
from seva.geometry import get_preset_pose_fov
|
16 |
+
|
17 |
+
|
18 |
+
@dataclasses.dataclass
|
19 |
+
class Keyframe(object):
|
20 |
+
position: np.ndarray
|
21 |
+
wxyz: np.ndarray
|
22 |
+
override_fov_enabled: bool
|
23 |
+
override_fov_rad: float
|
24 |
+
aspect: float
|
25 |
+
override_transition_enabled: bool
|
26 |
+
override_transition_sec: float | None
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def from_camera(camera: viser.CameraHandle, aspect: float) -> "Keyframe":
|
30 |
+
return Keyframe(
|
31 |
+
camera.position,
|
32 |
+
camera.wxyz,
|
33 |
+
override_fov_enabled=False,
|
34 |
+
override_fov_rad=camera.fov,
|
35 |
+
aspect=aspect,
|
36 |
+
override_transition_enabled=False,
|
37 |
+
override_transition_sec=None,
|
38 |
+
)
|
39 |
+
|
40 |
+
@staticmethod
|
41 |
+
def from_se3(se3: vt.SE3, fov: float, aspect: float) -> "Keyframe":
|
42 |
+
return Keyframe(
|
43 |
+
se3.translation(),
|
44 |
+
se3.rotation().wxyz,
|
45 |
+
override_fov_enabled=False,
|
46 |
+
override_fov_rad=fov,
|
47 |
+
aspect=aspect,
|
48 |
+
override_transition_enabled=False,
|
49 |
+
override_transition_sec=None,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
class CameraTrajectory(object):
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
server: viser.ViserServer,
|
57 |
+
duration_element: viser.GuiInputHandle[float],
|
58 |
+
scene_scale: float,
|
59 |
+
scene_node_prefix: str = "/",
|
60 |
+
):
|
61 |
+
self._server = server
|
62 |
+
self._keyframes: dict[int, tuple[Keyframe, viser.CameraFrustumHandle]] = {}
|
63 |
+
self._keyframe_counter: int = 0
|
64 |
+
self._spline_nodes: list[viser.SceneNodeHandle] = []
|
65 |
+
self._camera_edit_panel: viser.Gui3dContainerHandle | None = None
|
66 |
+
|
67 |
+
self._orientation_spline: splines.quaternion.KochanekBartels | None = None
|
68 |
+
self._position_spline: splines.KochanekBartels | None = None
|
69 |
+
self._fov_spline: splines.KochanekBartels | None = None
|
70 |
+
|
71 |
+
self._keyframes_visible: bool = True
|
72 |
+
|
73 |
+
self._duration_element = duration_element
|
74 |
+
self._scene_node_prefix = scene_node_prefix
|
75 |
+
|
76 |
+
self.scene_scale = scene_scale
|
77 |
+
# These parameters should be overridden externally.
|
78 |
+
self.loop: bool = False
|
79 |
+
self.framerate: float = 30.0
|
80 |
+
self.tension: float = 0.0 # Tension / alpha term.
|
81 |
+
self.default_fov: float = 0.0
|
82 |
+
self.default_transition_sec: float = 0.0
|
83 |
+
self.show_spline: bool = True
|
84 |
+
|
85 |
+
def set_keyframes_visible(self, visible: bool) -> None:
|
86 |
+
self._keyframes_visible = visible
|
87 |
+
for keyframe in self._keyframes.values():
|
88 |
+
keyframe[1].visible = visible
|
89 |
+
|
90 |
+
def add_camera(self, keyframe: Keyframe, keyframe_index: int | None = None) -> None:
|
91 |
+
"""Add a new camera, or replace an old one if `keyframe_index` is passed in."""
|
92 |
+
server = self._server
|
93 |
+
|
94 |
+
# Add a keyframe if we aren't replacing an existing one.
|
95 |
+
if keyframe_index is None:
|
96 |
+
keyframe_index = self._keyframe_counter
|
97 |
+
self._keyframe_counter += 1
|
98 |
+
|
99 |
+
print(
|
100 |
+
f"{keyframe.wxyz=} {keyframe.position=} {keyframe_index=} {keyframe.aspect=}"
|
101 |
+
)
|
102 |
+
frustum_handle = server.scene.add_camera_frustum(
|
103 |
+
str(Path(self._scene_node_prefix) / f"cameras/{keyframe_index}"),
|
104 |
+
fov=(
|
105 |
+
keyframe.override_fov_rad
|
106 |
+
if keyframe.override_fov_enabled
|
107 |
+
else self.default_fov
|
108 |
+
),
|
109 |
+
aspect=keyframe.aspect,
|
110 |
+
scale=0.1 * self.scene_scale,
|
111 |
+
color=(200, 10, 30),
|
112 |
+
wxyz=keyframe.wxyz,
|
113 |
+
position=keyframe.position,
|
114 |
+
visible=self._keyframes_visible,
|
115 |
+
)
|
116 |
+
self._server.scene.add_icosphere(
|
117 |
+
str(Path(self._scene_node_prefix) / f"cameras/{keyframe_index}/sphere"),
|
118 |
+
radius=0.03,
|
119 |
+
color=(200, 10, 30),
|
120 |
+
)
|
121 |
+
|
122 |
+
@frustum_handle.on_click
|
123 |
+
def _(_) -> None:
|
124 |
+
if self._camera_edit_panel is not None:
|
125 |
+
self._camera_edit_panel.remove()
|
126 |
+
self._camera_edit_panel = None
|
127 |
+
|
128 |
+
with server.scene.add_3d_gui_container(
|
129 |
+
"/camera_edit_panel",
|
130 |
+
position=keyframe.position,
|
131 |
+
) as camera_edit_panel:
|
132 |
+
self._camera_edit_panel = camera_edit_panel
|
133 |
+
override_fov = server.gui.add_checkbox(
|
134 |
+
"Override FOV", initial_value=keyframe.override_fov_enabled
|
135 |
+
)
|
136 |
+
override_fov_degrees = server.gui.add_slider(
|
137 |
+
"Override FOV (degrees)",
|
138 |
+
5.0,
|
139 |
+
175.0,
|
140 |
+
step=0.1,
|
141 |
+
initial_value=keyframe.override_fov_rad * 180.0 / np.pi,
|
142 |
+
disabled=not keyframe.override_fov_enabled,
|
143 |
+
)
|
144 |
+
delete_button = server.gui.add_button(
|
145 |
+
"Delete", color="red", icon=viser.Icon.TRASH
|
146 |
+
)
|
147 |
+
go_to_button = server.gui.add_button("Go to")
|
148 |
+
close_button = server.gui.add_button("Close")
|
149 |
+
|
150 |
+
@override_fov.on_update
|
151 |
+
def _(_) -> None:
|
152 |
+
keyframe.override_fov_enabled = override_fov.value
|
153 |
+
override_fov_degrees.disabled = not override_fov.value
|
154 |
+
self.add_camera(keyframe, keyframe_index)
|
155 |
+
|
156 |
+
@override_fov_degrees.on_update
|
157 |
+
def _(_) -> None:
|
158 |
+
keyframe.override_fov_rad = override_fov_degrees.value / 180.0 * np.pi
|
159 |
+
self.add_camera(keyframe, keyframe_index)
|
160 |
+
|
161 |
+
@delete_button.on_click
|
162 |
+
def _(event: viser.GuiEvent) -> None:
|
163 |
+
assert event.client is not None
|
164 |
+
with event.client.gui.add_modal("Confirm") as modal:
|
165 |
+
event.client.gui.add_markdown("Delete keyframe?")
|
166 |
+
confirm_button = event.client.gui.add_button(
|
167 |
+
"Yes", color="red", icon=viser.Icon.TRASH
|
168 |
+
)
|
169 |
+
exit_button = event.client.gui.add_button("Cancel")
|
170 |
+
|
171 |
+
@confirm_button.on_click
|
172 |
+
def _(_) -> None:
|
173 |
+
assert camera_edit_panel is not None
|
174 |
+
|
175 |
+
keyframe_id = None
|
176 |
+
for i, keyframe_tuple in self._keyframes.items():
|
177 |
+
if keyframe_tuple[1] is frustum_handle:
|
178 |
+
keyframe_id = i
|
179 |
+
break
|
180 |
+
assert keyframe_id is not None
|
181 |
+
|
182 |
+
self._keyframes.pop(keyframe_id)
|
183 |
+
frustum_handle.remove()
|
184 |
+
camera_edit_panel.remove()
|
185 |
+
self._camera_edit_panel = None
|
186 |
+
modal.close()
|
187 |
+
self.update_spline()
|
188 |
+
|
189 |
+
@exit_button.on_click
|
190 |
+
def _(_) -> None:
|
191 |
+
modal.close()
|
192 |
+
|
193 |
+
@go_to_button.on_click
|
194 |
+
def _(event: viser.GuiEvent) -> None:
|
195 |
+
assert event.client is not None
|
196 |
+
client = event.client
|
197 |
+
T_world_current = vt.SE3.from_rotation_and_translation(
|
198 |
+
vt.SO3(client.camera.wxyz), client.camera.position
|
199 |
+
)
|
200 |
+
T_world_target = vt.SE3.from_rotation_and_translation(
|
201 |
+
vt.SO3(keyframe.wxyz), keyframe.position
|
202 |
+
) @ vt.SE3.from_translation(np.array([0.0, 0.0, -0.5]))
|
203 |
+
|
204 |
+
T_current_target = T_world_current.inverse() @ T_world_target
|
205 |
+
|
206 |
+
for j in range(10):
|
207 |
+
T_world_set = T_world_current @ vt.SE3.exp(
|
208 |
+
T_current_target.log() * j / 9.0
|
209 |
+
)
|
210 |
+
|
211 |
+
# Important bit: we atomically set both the orientation and
|
212 |
+
# the position of the camera.
|
213 |
+
with client.atomic():
|
214 |
+
client.camera.wxyz = T_world_set.rotation().wxyz
|
215 |
+
client.camera.position = T_world_set.translation()
|
216 |
+
time.sleep(1.0 / 30.0)
|
217 |
+
|
218 |
+
@close_button.on_click
|
219 |
+
def _(_) -> None:
|
220 |
+
assert camera_edit_panel is not None
|
221 |
+
camera_edit_panel.remove()
|
222 |
+
self._camera_edit_panel = None
|
223 |
+
|
224 |
+
self._keyframes[keyframe_index] = (keyframe, frustum_handle)
|
225 |
+
|
226 |
+
def update_aspect(self, aspect: float) -> None:
|
227 |
+
for keyframe_index, frame in self._keyframes.items():
|
228 |
+
frame = dataclasses.replace(frame[0], aspect=aspect)
|
229 |
+
self.add_camera(frame, keyframe_index=keyframe_index)
|
230 |
+
|
231 |
+
def get_aspect(self) -> float:
|
232 |
+
"""Get W/H aspect ratio, which is shared across all keyframes."""
|
233 |
+
assert len(self._keyframes) > 0
|
234 |
+
return next(iter(self._keyframes.values()))[0].aspect
|
235 |
+
|
236 |
+
def reset(self) -> None:
|
237 |
+
for frame in self._keyframes.values():
|
238 |
+
print(f"removing {frame[1]}")
|
239 |
+
frame[1].remove()
|
240 |
+
self._keyframes.clear()
|
241 |
+
self.update_spline()
|
242 |
+
print("camera traj reset")
|
243 |
+
|
244 |
+
def spline_t_from_t_sec(self, time: np.ndarray) -> np.ndarray:
|
245 |
+
"""From a time value in seconds, compute a t value for our geometric
|
246 |
+
spline interpolation. An increment of 1 for the latter will move the
|
247 |
+
camera forward by one keyframe.
|
248 |
+
|
249 |
+
We use a PCHIP spline here to guarantee monotonicity.
|
250 |
+
"""
|
251 |
+
transition_times_cumsum = self.compute_transition_times_cumsum()
|
252 |
+
spline_indices = np.arange(transition_times_cumsum.shape[0])
|
253 |
+
|
254 |
+
if self.loop:
|
255 |
+
# In the case of a loop, we pad the spline to match the start/end
|
256 |
+
# slopes.
|
257 |
+
interpolator = scipy.interpolate.PchipInterpolator(
|
258 |
+
x=np.concatenate(
|
259 |
+
[
|
260 |
+
[-(transition_times_cumsum[-1] - transition_times_cumsum[-2])],
|
261 |
+
transition_times_cumsum,
|
262 |
+
transition_times_cumsum[-1:] + transition_times_cumsum[1:2],
|
263 |
+
],
|
264 |
+
axis=0,
|
265 |
+
),
|
266 |
+
y=np.concatenate(
|
267 |
+
[[-1], spline_indices, [spline_indices[-1] + 1]], # type: ignore
|
268 |
+
axis=0,
|
269 |
+
),
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
interpolator = scipy.interpolate.PchipInterpolator(
|
273 |
+
x=transition_times_cumsum, y=spline_indices
|
274 |
+
)
|
275 |
+
|
276 |
+
# Clip to account for floating point error.
|
277 |
+
return np.clip(interpolator(time), 0, spline_indices[-1])
|
278 |
+
|
279 |
+
def interpolate_pose_and_fov_rad(
|
280 |
+
self, normalized_t: float
|
281 |
+
) -> tuple[vt.SE3, float] | None:
|
282 |
+
if len(self._keyframes) < 2:
|
283 |
+
return None
|
284 |
+
|
285 |
+
self._fov_spline = splines.KochanekBartels(
|
286 |
+
[
|
287 |
+
(
|
288 |
+
keyframe[0].override_fov_rad
|
289 |
+
if keyframe[0].override_fov_enabled
|
290 |
+
else self.default_fov
|
291 |
+
)
|
292 |
+
for keyframe in self._keyframes.values()
|
293 |
+
],
|
294 |
+
tcb=(self.tension, 0.0, 0.0),
|
295 |
+
endconditions="closed" if self.loop else "natural",
|
296 |
+
)
|
297 |
+
|
298 |
+
assert self._orientation_spline is not None
|
299 |
+
assert self._position_spline is not None
|
300 |
+
assert self._fov_spline is not None
|
301 |
+
|
302 |
+
max_t = self.compute_duration()
|
303 |
+
t = max_t * normalized_t
|
304 |
+
spline_t = float(self.spline_t_from_t_sec(np.array(t)))
|
305 |
+
|
306 |
+
quat = self._orientation_spline.evaluate(spline_t)
|
307 |
+
assert isinstance(quat, splines.quaternion.UnitQuaternion)
|
308 |
+
return (
|
309 |
+
vt.SE3.from_rotation_and_translation(
|
310 |
+
vt.SO3(np.array([quat.scalar, *quat.vector])),
|
311 |
+
self._position_spline.evaluate(spline_t),
|
312 |
+
),
|
313 |
+
float(self._fov_spline.evaluate(spline_t)),
|
314 |
+
)
|
315 |
+
|
316 |
+
def update_spline(self) -> None:
|
317 |
+
num_frames = int(self.compute_duration() * self.framerate)
|
318 |
+
keyframes = list(self._keyframes.values())
|
319 |
+
|
320 |
+
if num_frames <= 0 or not self.show_spline or len(keyframes) < 2:
|
321 |
+
for node in self._spline_nodes:
|
322 |
+
node.remove()
|
323 |
+
self._spline_nodes.clear()
|
324 |
+
return
|
325 |
+
|
326 |
+
transition_times_cumsum = self.compute_transition_times_cumsum()
|
327 |
+
|
328 |
+
self._orientation_spline = splines.quaternion.KochanekBartels(
|
329 |
+
[
|
330 |
+
splines.quaternion.UnitQuaternion.from_unit_xyzw(
|
331 |
+
np.roll(keyframe[0].wxyz, shift=-1)
|
332 |
+
)
|
333 |
+
for keyframe in keyframes
|
334 |
+
],
|
335 |
+
tcb=(self.tension, 0.0, 0.0),
|
336 |
+
endconditions="closed" if self.loop else "natural",
|
337 |
+
)
|
338 |
+
self._position_spline = splines.KochanekBartels(
|
339 |
+
[keyframe[0].position for keyframe in keyframes],
|
340 |
+
tcb=(self.tension, 0.0, 0.0),
|
341 |
+
endconditions="closed" if self.loop else "natural",
|
342 |
+
)
|
343 |
+
|
344 |
+
# Update visualized spline.
|
345 |
+
points_array = self._position_spline.evaluate(
|
346 |
+
self.spline_t_from_t_sec(
|
347 |
+
np.linspace(0, transition_times_cumsum[-1], num_frames)
|
348 |
+
)
|
349 |
+
)
|
350 |
+
colors_array = np.array(
|
351 |
+
[
|
352 |
+
colorsys.hls_to_rgb(h, 0.5, 1.0)
|
353 |
+
for h in np.linspace(0.0, 1.0, len(points_array))
|
354 |
+
]
|
355 |
+
)
|
356 |
+
|
357 |
+
# Clear prior spline nodes.
|
358 |
+
for node in self._spline_nodes:
|
359 |
+
node.remove()
|
360 |
+
self._spline_nodes.clear()
|
361 |
+
|
362 |
+
self._spline_nodes.append(
|
363 |
+
self._server.scene.add_spline_catmull_rom(
|
364 |
+
str(Path(self._scene_node_prefix) / "camera_spline"),
|
365 |
+
positions=points_array,
|
366 |
+
color=(220, 220, 220),
|
367 |
+
closed=self.loop,
|
368 |
+
line_width=1.0,
|
369 |
+
segments=points_array.shape[0] + 1,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
self._spline_nodes.append(
|
373 |
+
self._server.scene.add_point_cloud(
|
374 |
+
str(Path(self._scene_node_prefix) / "camera_spline/points"),
|
375 |
+
points=points_array,
|
376 |
+
colors=colors_array,
|
377 |
+
point_size=0.04,
|
378 |
+
)
|
379 |
+
)
|
380 |
+
|
381 |
+
def make_transition_handle(i: int) -> None:
|
382 |
+
assert self._position_spline is not None
|
383 |
+
transition_pos = self._position_spline.evaluate(
|
384 |
+
float(
|
385 |
+
self.spline_t_from_t_sec(
|
386 |
+
(transition_times_cumsum[i] + transition_times_cumsum[i + 1])
|
387 |
+
/ 2.0,
|
388 |
+
)
|
389 |
+
)
|
390 |
+
)
|
391 |
+
transition_sphere = self._server.scene.add_icosphere(
|
392 |
+
str(Path(self._scene_node_prefix) / f"camera_spline/transition_{i}"),
|
393 |
+
radius=0.04,
|
394 |
+
color=(255, 0, 0),
|
395 |
+
position=transition_pos,
|
396 |
+
)
|
397 |
+
self._spline_nodes.append(transition_sphere)
|
398 |
+
|
399 |
+
@transition_sphere.on_click
|
400 |
+
def _(_) -> None:
|
401 |
+
server = self._server
|
402 |
+
|
403 |
+
if self._camera_edit_panel is not None:
|
404 |
+
self._camera_edit_panel.remove()
|
405 |
+
self._camera_edit_panel = None
|
406 |
+
|
407 |
+
keyframe_index = (i + 1) % len(self._keyframes)
|
408 |
+
keyframe = keyframes[keyframe_index][0]
|
409 |
+
|
410 |
+
with server.scene.add_3d_gui_container(
|
411 |
+
"/camera_edit_panel",
|
412 |
+
position=transition_pos,
|
413 |
+
) as camera_edit_panel:
|
414 |
+
self._camera_edit_panel = camera_edit_panel
|
415 |
+
override_transition_enabled = server.gui.add_checkbox(
|
416 |
+
"Override transition",
|
417 |
+
initial_value=keyframe.override_transition_enabled,
|
418 |
+
)
|
419 |
+
override_transition_sec = server.gui.add_number(
|
420 |
+
"Override transition (sec)",
|
421 |
+
initial_value=(
|
422 |
+
keyframe.override_transition_sec
|
423 |
+
if keyframe.override_transition_sec is not None
|
424 |
+
else self.default_transition_sec
|
425 |
+
),
|
426 |
+
min=0.001,
|
427 |
+
max=30.0,
|
428 |
+
step=0.001,
|
429 |
+
disabled=not override_transition_enabled.value,
|
430 |
+
)
|
431 |
+
close_button = server.gui.add_button("Close")
|
432 |
+
|
433 |
+
@override_transition_enabled.on_update
|
434 |
+
def _(_) -> None:
|
435 |
+
keyframe.override_transition_enabled = (
|
436 |
+
override_transition_enabled.value
|
437 |
+
)
|
438 |
+
override_transition_sec.disabled = (
|
439 |
+
not override_transition_enabled.value
|
440 |
+
)
|
441 |
+
self._duration_element.value = self.compute_duration()
|
442 |
+
|
443 |
+
@override_transition_sec.on_update
|
444 |
+
def _(_) -> None:
|
445 |
+
keyframe.override_transition_sec = override_transition_sec.value
|
446 |
+
self._duration_element.value = self.compute_duration()
|
447 |
+
|
448 |
+
@close_button.on_click
|
449 |
+
def _(_) -> None:
|
450 |
+
assert camera_edit_panel is not None
|
451 |
+
camera_edit_panel.remove()
|
452 |
+
self._camera_edit_panel = None
|
453 |
+
|
454 |
+
(num_transitions_plus_1,) = transition_times_cumsum.shape
|
455 |
+
for i in range(num_transitions_plus_1 - 1):
|
456 |
+
make_transition_handle(i)
|
457 |
+
|
458 |
+
def compute_duration(self) -> float:
|
459 |
+
"""Compute the total duration of the trajectory."""
|
460 |
+
total = 0.0
|
461 |
+
for i, (keyframe, frustum) in enumerate(self._keyframes.values()):
|
462 |
+
if i == 0 and not self.loop:
|
463 |
+
continue
|
464 |
+
del frustum
|
465 |
+
total += (
|
466 |
+
keyframe.override_transition_sec
|
467 |
+
if keyframe.override_transition_enabled
|
468 |
+
and keyframe.override_transition_sec is not None
|
469 |
+
else self.default_transition_sec
|
470 |
+
)
|
471 |
+
return total
|
472 |
+
|
473 |
+
def compute_transition_times_cumsum(self) -> np.ndarray:
|
474 |
+
"""Compute the total duration of the trajectory."""
|
475 |
+
total = 0.0
|
476 |
+
out = [0.0]
|
477 |
+
for i, (keyframe, frustum) in enumerate(self._keyframes.values()):
|
478 |
+
if i == 0:
|
479 |
+
continue
|
480 |
+
del frustum
|
481 |
+
total += (
|
482 |
+
keyframe.override_transition_sec
|
483 |
+
if keyframe.override_transition_enabled
|
484 |
+
and keyframe.override_transition_sec is not None
|
485 |
+
else self.default_transition_sec
|
486 |
+
)
|
487 |
+
out.append(total)
|
488 |
+
|
489 |
+
if self.loop:
|
490 |
+
keyframe = next(iter(self._keyframes.values()))[0]
|
491 |
+
total += (
|
492 |
+
keyframe.override_transition_sec
|
493 |
+
if keyframe.override_transition_enabled
|
494 |
+
and keyframe.override_transition_sec is not None
|
495 |
+
else self.default_transition_sec
|
496 |
+
)
|
497 |
+
out.append(total)
|
498 |
+
|
499 |
+
return np.array(out)
|
500 |
+
|
501 |
+
|
502 |
+
@dataclasses.dataclass
|
503 |
+
class GuiState:
|
504 |
+
preview_render: bool
|
505 |
+
preview_fov: float
|
506 |
+
preview_aspect: float
|
507 |
+
camera_traj_list: list | None
|
508 |
+
active_input_index: int
|
509 |
+
|
510 |
+
|
511 |
+
def define_gui(
|
512 |
+
server: viser.ViserServer,
|
513 |
+
init_fov: float = 75.0,
|
514 |
+
img_wh: tuple[int, int] = (576, 576),
|
515 |
+
**kwargs,
|
516 |
+
) -> GuiState:
|
517 |
+
gui_state = GuiState(
|
518 |
+
preview_render=False,
|
519 |
+
preview_fov=0.0,
|
520 |
+
preview_aspect=1.0,
|
521 |
+
camera_traj_list=None,
|
522 |
+
active_input_index=0,
|
523 |
+
)
|
524 |
+
|
525 |
+
with server.gui.add_folder(
|
526 |
+
"Preset camera trajectories", order=99, expand_by_default=False
|
527 |
+
):
|
528 |
+
preset_traj_dropdown = server.gui.add_dropdown(
|
529 |
+
"Options",
|
530 |
+
[
|
531 |
+
"orbit",
|
532 |
+
"spiral",
|
533 |
+
"lemniscate",
|
534 |
+
"zoom-out",
|
535 |
+
"dolly zoom-out",
|
536 |
+
],
|
537 |
+
initial_value="orbit",
|
538 |
+
hint="Select a preset camera trajectory.",
|
539 |
+
)
|
540 |
+
preset_duration_num = server.gui.add_number(
|
541 |
+
"Duration (sec)",
|
542 |
+
min=1.0,
|
543 |
+
max=60.0,
|
544 |
+
step=0.5,
|
545 |
+
initial_value=2.0,
|
546 |
+
)
|
547 |
+
preset_submit_button = server.gui.add_button(
|
548 |
+
"Submit",
|
549 |
+
icon=viser.Icon.PICK,
|
550 |
+
hint="Add a new keyframe at the current pose.",
|
551 |
+
)
|
552 |
+
|
553 |
+
@preset_submit_button.on_click
|
554 |
+
def _(event: viser.GuiEvent) -> None:
|
555 |
+
camera_traj.reset()
|
556 |
+
gui_state.camera_traj_list = None
|
557 |
+
|
558 |
+
duration = preset_duration_num.value
|
559 |
+
fps = framerate_number.value
|
560 |
+
num_frames = int(duration * fps)
|
561 |
+
transition_sec = duration / num_frames
|
562 |
+
transition_sec_number.value = transition_sec
|
563 |
+
assert event.client_id is not None
|
564 |
+
transition_sec_number.disabled = True
|
565 |
+
loop_checkbox.disabled = True
|
566 |
+
add_keyframe_button.disabled = True
|
567 |
+
|
568 |
+
camera = server.get_clients()[event.client_id].camera
|
569 |
+
start_w2c = torch.linalg.inv(
|
570 |
+
torch.as_tensor(
|
571 |
+
vt.SE3.from_rotation_and_translation(
|
572 |
+
vt.SO3(camera.wxyz), camera.position
|
573 |
+
).as_matrix(),
|
574 |
+
dtype=torch.float32,
|
575 |
+
)
|
576 |
+
)
|
577 |
+
look_at = torch.as_tensor(camera.look_at, dtype=torch.float32)
|
578 |
+
up_direction = torch.as_tensor(camera.up_direction, dtype=torch.float32)
|
579 |
+
poses, fovs = get_preset_pose_fov(
|
580 |
+
option=preset_traj_dropdown.value, # type: ignore
|
581 |
+
num_frames=num_frames,
|
582 |
+
start_w2c=start_w2c,
|
583 |
+
look_at=look_at,
|
584 |
+
up_direction=up_direction,
|
585 |
+
fov=camera.fov,
|
586 |
+
)
|
587 |
+
assert poses is not None and fovs is not None
|
588 |
+
for pose, fov in zip(poses, fovs):
|
589 |
+
camera_traj.add_camera(
|
590 |
+
Keyframe.from_se3(
|
591 |
+
vt.SE3.from_matrix(pose),
|
592 |
+
fov=fov,
|
593 |
+
aspect=img_wh[0] / img_wh[1],
|
594 |
+
)
|
595 |
+
)
|
596 |
+
|
597 |
+
duration_number.value = camera_traj.compute_duration()
|
598 |
+
camera_traj.update_spline()
|
599 |
+
|
600 |
+
with server.gui.add_folder("Advanced", expand_by_default=False, order=100):
|
601 |
+
transition_sec_number = server.gui.add_number(
|
602 |
+
"Transition (sec)",
|
603 |
+
min=0.001,
|
604 |
+
max=30.0,
|
605 |
+
step=0.001,
|
606 |
+
initial_value=1.5,
|
607 |
+
hint="Time in seconds between each keyframe, which can also be overridden on a per-transition basis.",
|
608 |
+
)
|
609 |
+
framerate_number = server.gui.add_number(
|
610 |
+
"FPS", min=0.1, max=240.0, step=1e-2, initial_value=30.0
|
611 |
+
)
|
612 |
+
framerate_buttons = server.gui.add_button_group("", ("24", "30", "60"))
|
613 |
+
duration_number = server.gui.add_number(
|
614 |
+
"Duration (sec)",
|
615 |
+
min=0.0,
|
616 |
+
max=1e8,
|
617 |
+
step=0.001,
|
618 |
+
initial_value=0.0,
|
619 |
+
disabled=True,
|
620 |
+
)
|
621 |
+
|
622 |
+
@framerate_buttons.on_click
|
623 |
+
def _(_) -> None:
|
624 |
+
framerate_number.value = float(framerate_buttons.value)
|
625 |
+
|
626 |
+
fov_degree_slider = server.gui.add_slider(
|
627 |
+
"FOV",
|
628 |
+
initial_value=init_fov,
|
629 |
+
min=0.1,
|
630 |
+
max=175.0,
|
631 |
+
step=0.01,
|
632 |
+
hint="Field-of-view for rendering, which can also be overridden on a per-keyframe basis.",
|
633 |
+
)
|
634 |
+
|
635 |
+
@fov_degree_slider.on_update
|
636 |
+
def _(_) -> None:
|
637 |
+
fov_radians = fov_degree_slider.value / 180.0 * np.pi
|
638 |
+
for client in server.get_clients().values():
|
639 |
+
client.camera.fov = fov_radians
|
640 |
+
camera_traj.default_fov = fov_radians
|
641 |
+
|
642 |
+
# Updating the aspect ratio will also re-render the camera frustums.
|
643 |
+
# Could rethink this.
|
644 |
+
camera_traj.update_aspect(img_wh[0] / img_wh[1])
|
645 |
+
compute_and_update_preview_camera_state()
|
646 |
+
|
647 |
+
scene_node_prefix = "/render_assets"
|
648 |
+
base_scene_node = server.scene.add_frame(scene_node_prefix, show_axes=False)
|
649 |
+
add_keyframe_button = server.gui.add_button(
|
650 |
+
"Add keyframe",
|
651 |
+
icon=viser.Icon.PLUS,
|
652 |
+
hint="Add a new keyframe at the current pose.",
|
653 |
+
)
|
654 |
+
|
655 |
+
@add_keyframe_button.on_click
|
656 |
+
def _(event: viser.GuiEvent) -> None:
|
657 |
+
assert event.client_id is not None
|
658 |
+
camera = server.get_clients()[event.client_id].camera
|
659 |
+
pose = vt.SE3.from_rotation_and_translation(
|
660 |
+
vt.SO3(camera.wxyz), camera.position
|
661 |
+
)
|
662 |
+
print(f"client {event.client_id} at {camera.position} {camera.wxyz}")
|
663 |
+
print(f"camera pose {pose.as_matrix()}")
|
664 |
+
|
665 |
+
# Add this camera to the trajectory.
|
666 |
+
camera_traj.add_camera(
|
667 |
+
Keyframe.from_camera(
|
668 |
+
camera,
|
669 |
+
aspect=img_wh[0] / img_wh[1],
|
670 |
+
),
|
671 |
+
)
|
672 |
+
duration_number.value = camera_traj.compute_duration()
|
673 |
+
camera_traj.update_spline()
|
674 |
+
|
675 |
+
clear_keyframes_button = server.gui.add_button(
|
676 |
+
"Clear keyframes",
|
677 |
+
icon=viser.Icon.TRASH,
|
678 |
+
hint="Remove all keyframes from the render trajectory.",
|
679 |
+
)
|
680 |
+
|
681 |
+
@clear_keyframes_button.on_click
|
682 |
+
def _(event: viser.GuiEvent) -> None:
|
683 |
+
assert event.client_id is not None
|
684 |
+
client = server.get_clients()[event.client_id]
|
685 |
+
with client.atomic(), client.gui.add_modal("Confirm") as modal:
|
686 |
+
client.gui.add_markdown("Clear all keyframes?")
|
687 |
+
confirm_button = client.gui.add_button(
|
688 |
+
"Yes", color="red", icon=viser.Icon.TRASH
|
689 |
+
)
|
690 |
+
exit_button = client.gui.add_button("Cancel")
|
691 |
+
|
692 |
+
@confirm_button.on_click
|
693 |
+
def _(_) -> None:
|
694 |
+
camera_traj.reset()
|
695 |
+
modal.close()
|
696 |
+
|
697 |
+
duration_number.value = camera_traj.compute_duration()
|
698 |
+
add_keyframe_button.disabled = False
|
699 |
+
transition_sec_number.disabled = False
|
700 |
+
transition_sec_number.value = 1.5
|
701 |
+
loop_checkbox.disabled = False
|
702 |
+
|
703 |
+
nonlocal gui_state
|
704 |
+
gui_state.camera_traj_list = None
|
705 |
+
|
706 |
+
@exit_button.on_click
|
707 |
+
def _(_) -> None:
|
708 |
+
modal.close()
|
709 |
+
|
710 |
+
play_button = server.gui.add_button("Play", icon=viser.Icon.PLAYER_PLAY)
|
711 |
+
pause_button = server.gui.add_button(
|
712 |
+
"Pause", icon=viser.Icon.PLAYER_PAUSE, visible=False
|
713 |
+
)
|
714 |
+
|
715 |
+
# Poll the play button to see if we should be playing endlessly.
|
716 |
+
def play() -> None:
|
717 |
+
while True:
|
718 |
+
while not play_button.visible:
|
719 |
+
max_frame = int(framerate_number.value * duration_number.value)
|
720 |
+
if max_frame > 0:
|
721 |
+
assert preview_frame_slider is not None
|
722 |
+
preview_frame_slider.value = (
|
723 |
+
preview_frame_slider.value + 1
|
724 |
+
) % max_frame
|
725 |
+
time.sleep(1.0 / framerate_number.value)
|
726 |
+
time.sleep(0.1)
|
727 |
+
|
728 |
+
threading.Thread(target=play).start()
|
729 |
+
|
730 |
+
# Play the camera trajectory when the play button is pressed.
|
731 |
+
@play_button.on_click
|
732 |
+
def _(_) -> None:
|
733 |
+
play_button.visible = False
|
734 |
+
pause_button.visible = True
|
735 |
+
|
736 |
+
# Play the camera trajectory when the play button is pressed.
|
737 |
+
@pause_button.on_click
|
738 |
+
def _(_) -> None:
|
739 |
+
play_button.visible = True
|
740 |
+
pause_button.visible = False
|
741 |
+
|
742 |
+
preview_render_button = server.gui.add_button(
|
743 |
+
"Preview render",
|
744 |
+
hint="Show a preview of the render in the viewport.",
|
745 |
+
icon=viser.Icon.CAMERA_CHECK,
|
746 |
+
)
|
747 |
+
preview_render_stop_button = server.gui.add_button(
|
748 |
+
"Exit render preview",
|
749 |
+
color="red",
|
750 |
+
icon=viser.Icon.CAMERA_CANCEL,
|
751 |
+
visible=False,
|
752 |
+
)
|
753 |
+
|
754 |
+
@preview_render_button.on_click
|
755 |
+
def _(_) -> None:
|
756 |
+
gui_state.preview_render = True
|
757 |
+
preview_render_button.visible = False
|
758 |
+
preview_render_stop_button.visible = True
|
759 |
+
play_button.visible = False
|
760 |
+
pause_button.visible = True
|
761 |
+
preset_submit_button.disabled = True
|
762 |
+
|
763 |
+
maybe_pose_and_fov_rad = compute_and_update_preview_camera_state()
|
764 |
+
if maybe_pose_and_fov_rad is None:
|
765 |
+
remove_preview_camera()
|
766 |
+
return
|
767 |
+
pose, fov = maybe_pose_and_fov_rad
|
768 |
+
del fov
|
769 |
+
|
770 |
+
# Hide all render assets when we're previewing the render.
|
771 |
+
nonlocal base_scene_node
|
772 |
+
base_scene_node.visible = False
|
773 |
+
|
774 |
+
# Back up and then set camera poses.
|
775 |
+
for client in server.get_clients().values():
|
776 |
+
camera_pose_backup_from_id[client.client_id] = (
|
777 |
+
client.camera.position,
|
778 |
+
client.camera.look_at,
|
779 |
+
client.camera.up_direction,
|
780 |
+
)
|
781 |
+
with client.atomic():
|
782 |
+
client.camera.wxyz = pose.rotation().wxyz
|
783 |
+
client.camera.position = pose.translation()
|
784 |
+
|
785 |
+
def stop_preview_render() -> None:
|
786 |
+
gui_state.preview_render = False
|
787 |
+
preview_render_button.visible = True
|
788 |
+
preview_render_stop_button.visible = False
|
789 |
+
play_button.visible = True
|
790 |
+
pause_button.visible = False
|
791 |
+
preset_submit_button.disabled = False
|
792 |
+
|
793 |
+
# Revert camera poses.
|
794 |
+
for client in server.get_clients().values():
|
795 |
+
if client.client_id not in camera_pose_backup_from_id:
|
796 |
+
continue
|
797 |
+
cam_position, cam_look_at, cam_up = camera_pose_backup_from_id.pop(
|
798 |
+
client.client_id
|
799 |
+
)
|
800 |
+
with client.atomic():
|
801 |
+
client.camera.position = cam_position
|
802 |
+
client.camera.look_at = cam_look_at
|
803 |
+
client.camera.up_direction = cam_up
|
804 |
+
client.flush()
|
805 |
+
|
806 |
+
# Un-hide render assets.
|
807 |
+
nonlocal base_scene_node
|
808 |
+
base_scene_node.visible = True
|
809 |
+
remove_preview_camera()
|
810 |
+
|
811 |
+
@preview_render_stop_button.on_click
|
812 |
+
def _(_) -> None:
|
813 |
+
stop_preview_render()
|
814 |
+
|
815 |
+
def get_max_frame_index() -> int:
|
816 |
+
return max(1, int(framerate_number.value * duration_number.value) - 1)
|
817 |
+
|
818 |
+
def add_preview_frame_slider() -> viser.GuiInputHandle[int] | None:
|
819 |
+
"""Helper for creating the current frame # slider. This is removed and
|
820 |
+
re-added anytime the `max` value changes."""
|
821 |
+
|
822 |
+
preview_frame_slider = server.gui.add_slider(
|
823 |
+
"Preview frame",
|
824 |
+
min=0,
|
825 |
+
max=get_max_frame_index(),
|
826 |
+
step=1,
|
827 |
+
initial_value=0,
|
828 |
+
order=set_traj_button.order + 0.01,
|
829 |
+
disabled=get_max_frame_index() == 1,
|
830 |
+
)
|
831 |
+
play_button.disabled = preview_frame_slider.disabled
|
832 |
+
preview_render_button.disabled = preview_frame_slider.disabled
|
833 |
+
set_traj_button.disabled = preview_frame_slider.disabled
|
834 |
+
|
835 |
+
@preview_frame_slider.on_update
|
836 |
+
def _(_) -> None:
|
837 |
+
nonlocal preview_camera_handle
|
838 |
+
maybe_pose_and_fov_rad = compute_and_update_preview_camera_state()
|
839 |
+
if maybe_pose_and_fov_rad is None:
|
840 |
+
return
|
841 |
+
pose, fov_rad = maybe_pose_and_fov_rad
|
842 |
+
|
843 |
+
preview_camera_handle = server.scene.add_camera_frustum(
|
844 |
+
str(Path(scene_node_prefix) / "preview_camera"),
|
845 |
+
fov=fov_rad,
|
846 |
+
aspect=img_wh[0] / img_wh[1],
|
847 |
+
scale=0.35,
|
848 |
+
wxyz=pose.rotation().wxyz,
|
849 |
+
position=pose.translation(),
|
850 |
+
color=(10, 200, 30),
|
851 |
+
)
|
852 |
+
if gui_state.preview_render:
|
853 |
+
for client in server.get_clients().values():
|
854 |
+
with client.atomic():
|
855 |
+
client.camera.wxyz = pose.rotation().wxyz
|
856 |
+
client.camera.position = pose.translation()
|
857 |
+
|
858 |
+
return preview_frame_slider
|
859 |
+
|
860 |
+
set_traj_button = server.gui.add_button(
|
861 |
+
"Set camera trajectory",
|
862 |
+
color="green",
|
863 |
+
icon=viser.Icon.CHECK,
|
864 |
+
hint="Save the camera trajectory for rendering.",
|
865 |
+
)
|
866 |
+
|
867 |
+
@set_traj_button.on_click
|
868 |
+
def _(event: viser.GuiEvent) -> None:
|
869 |
+
assert event.client is not None
|
870 |
+
num_frames = int(framerate_number.value * duration_number.value)
|
871 |
+
|
872 |
+
def get_intrinsics(W, H, fov_rad):
|
873 |
+
focal = 0.5 * H / np.tan(0.5 * fov_rad)
|
874 |
+
return np.array(
|
875 |
+
[[focal, 0.0, 0.5 * W], [0.0, focal, 0.5 * H], [0.0, 0.0, 1.0]]
|
876 |
+
)
|
877 |
+
|
878 |
+
camera_traj_list = []
|
879 |
+
for i in range(num_frames):
|
880 |
+
maybe_pose_and_fov_rad = camera_traj.interpolate_pose_and_fov_rad(
|
881 |
+
i / num_frames
|
882 |
+
)
|
883 |
+
if maybe_pose_and_fov_rad is None:
|
884 |
+
return
|
885 |
+
pose, fov_rad = maybe_pose_and_fov_rad
|
886 |
+
H = img_wh[1]
|
887 |
+
W = img_wh[0]
|
888 |
+
K = get_intrinsics(W, H, fov_rad)
|
889 |
+
w2c = pose.inverse().as_matrix()
|
890 |
+
camera_traj_list.append(
|
891 |
+
{
|
892 |
+
"w2c": w2c.flatten().tolist(),
|
893 |
+
"K": K.flatten().tolist(),
|
894 |
+
"img_wh": (W, H),
|
895 |
+
}
|
896 |
+
)
|
897 |
+
nonlocal gui_state
|
898 |
+
gui_state.camera_traj_list = camera_traj_list
|
899 |
+
print(f"Get camera_traj_list: {gui_state.camera_traj_list}")
|
900 |
+
|
901 |
+
stop_preview_render()
|
902 |
+
|
903 |
+
preview_frame_slider = add_preview_frame_slider()
|
904 |
+
|
905 |
+
loop_checkbox = server.gui.add_checkbox(
|
906 |
+
"Loop", False, hint="Add a segment between the first and last keyframes."
|
907 |
+
)
|
908 |
+
|
909 |
+
@loop_checkbox.on_update
|
910 |
+
def _(_) -> None:
|
911 |
+
camera_traj.loop = loop_checkbox.value
|
912 |
+
duration_number.value = camera_traj.compute_duration()
|
913 |
+
|
914 |
+
@transition_sec_number.on_update
|
915 |
+
def _(_) -> None:
|
916 |
+
camera_traj.default_transition_sec = transition_sec_number.value
|
917 |
+
duration_number.value = camera_traj.compute_duration()
|
918 |
+
|
919 |
+
preview_camera_handle: viser.SceneNodeHandle | None = None
|
920 |
+
|
921 |
+
def remove_preview_camera() -> None:
|
922 |
+
nonlocal preview_camera_handle
|
923 |
+
if preview_camera_handle is not None:
|
924 |
+
preview_camera_handle.remove()
|
925 |
+
preview_camera_handle = None
|
926 |
+
|
927 |
+
def compute_and_update_preview_camera_state() -> tuple[vt.SE3, float] | None:
|
928 |
+
"""Update the render tab state with the current preview camera pose.
|
929 |
+
Returns current camera pose + FOV if available."""
|
930 |
+
|
931 |
+
if preview_frame_slider is None:
|
932 |
+
return None
|
933 |
+
maybe_pose_and_fov_rad = camera_traj.interpolate_pose_and_fov_rad(
|
934 |
+
preview_frame_slider.value / get_max_frame_index()
|
935 |
+
)
|
936 |
+
if maybe_pose_and_fov_rad is None:
|
937 |
+
remove_preview_camera()
|
938 |
+
return None
|
939 |
+
pose, fov_rad = maybe_pose_and_fov_rad
|
940 |
+
gui_state.preview_fov = fov_rad
|
941 |
+
gui_state.preview_aspect = camera_traj.get_aspect()
|
942 |
+
return pose, fov_rad
|
943 |
+
|
944 |
+
# We back up the camera poses before and after we start previewing renders.
|
945 |
+
camera_pose_backup_from_id: dict[int, tuple] = {}
|
946 |
+
|
947 |
+
# Update the # of frames.
|
948 |
+
@duration_number.on_update
|
949 |
+
@framerate_number.on_update
|
950 |
+
def _(_) -> None:
|
951 |
+
remove_preview_camera() # Will be re-added when slider is updated.
|
952 |
+
|
953 |
+
nonlocal preview_frame_slider
|
954 |
+
old = preview_frame_slider
|
955 |
+
assert old is not None
|
956 |
+
|
957 |
+
preview_frame_slider = add_preview_frame_slider()
|
958 |
+
if preview_frame_slider is not None:
|
959 |
+
old.remove()
|
960 |
+
else:
|
961 |
+
preview_frame_slider = old
|
962 |
+
|
963 |
+
camera_traj.framerate = framerate_number.value
|
964 |
+
camera_traj.update_spline()
|
965 |
+
|
966 |
+
camera_traj = CameraTrajectory(
|
967 |
+
server,
|
968 |
+
duration_number,
|
969 |
+
scene_node_prefix=scene_node_prefix,
|
970 |
+
**kwargs,
|
971 |
+
)
|
972 |
+
camera_traj.default_fov = fov_degree_slider.value / 180.0 * np.pi
|
973 |
+
camera_traj.default_transition_sec = transition_sec_number.value
|
974 |
+
|
975 |
+
return gui_state
|
seva/model.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from seva.modules.layers import (
|
7 |
+
Downsample,
|
8 |
+
GroupNorm32,
|
9 |
+
ResBlock,
|
10 |
+
TimestepEmbedSequential,
|
11 |
+
Upsample,
|
12 |
+
timestep_embedding,
|
13 |
+
)
|
14 |
+
from seva.modules.transformer import MultiviewTransformer
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class SevaParams(object):
|
19 |
+
in_channels: int = 11
|
20 |
+
model_channels: int = 320
|
21 |
+
out_channels: int = 4
|
22 |
+
num_frames: int = 21
|
23 |
+
num_res_blocks: int = 2
|
24 |
+
attention_resolutions: list[int] = field(default_factory=lambda: [4, 2, 1])
|
25 |
+
channel_mult: list[int] = field(default_factory=lambda: [1, 2, 4, 4])
|
26 |
+
num_head_channels: int = 64
|
27 |
+
transformer_depth: list[int] = field(default_factory=lambda: [1, 1, 1, 1])
|
28 |
+
context_dim: int = 1024
|
29 |
+
dense_in_channels: int = 6
|
30 |
+
dropout: float = 0.0
|
31 |
+
unflatten_names: list[str] = field(
|
32 |
+
default_factory=lambda: ["middle_ds8", "output_ds4", "output_ds2"]
|
33 |
+
)
|
34 |
+
|
35 |
+
def __post_init__(self):
|
36 |
+
assert len(self.channel_mult) == len(self.transformer_depth)
|
37 |
+
|
38 |
+
|
39 |
+
class Seva(nn.Module):
|
40 |
+
def __init__(self, params: SevaParams) -> None:
|
41 |
+
super().__init__()
|
42 |
+
self.params = params
|
43 |
+
self.model_channels = params.model_channels
|
44 |
+
self.out_channels = params.out_channels
|
45 |
+
self.num_head_channels = params.num_head_channels
|
46 |
+
|
47 |
+
time_embed_dim = params.model_channels * 4
|
48 |
+
self.time_embed = nn.Sequential(
|
49 |
+
nn.Linear(params.model_channels, time_embed_dim),
|
50 |
+
nn.SiLU(),
|
51 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
52 |
+
)
|
53 |
+
|
54 |
+
self.input_blocks = nn.ModuleList(
|
55 |
+
[
|
56 |
+
TimestepEmbedSequential(
|
57 |
+
nn.Conv2d(params.in_channels, params.model_channels, 3, padding=1)
|
58 |
+
)
|
59 |
+
]
|
60 |
+
)
|
61 |
+
self._feature_size = params.model_channels
|
62 |
+
input_block_chans = [params.model_channels]
|
63 |
+
ch = params.model_channels
|
64 |
+
ds = 1
|
65 |
+
for level, mult in enumerate(params.channel_mult):
|
66 |
+
for _ in range(params.num_res_blocks):
|
67 |
+
input_layers: list[ResBlock | MultiviewTransformer | Downsample] = [
|
68 |
+
ResBlock(
|
69 |
+
channels=ch,
|
70 |
+
emb_channels=time_embed_dim,
|
71 |
+
out_channels=mult * params.model_channels,
|
72 |
+
dense_in_channels=params.dense_in_channels,
|
73 |
+
dropout=params.dropout,
|
74 |
+
)
|
75 |
+
]
|
76 |
+
ch = mult * params.model_channels
|
77 |
+
if ds in params.attention_resolutions:
|
78 |
+
num_heads = ch // params.num_head_channels
|
79 |
+
dim_head = params.num_head_channels
|
80 |
+
input_layers.append(
|
81 |
+
MultiviewTransformer(
|
82 |
+
ch,
|
83 |
+
num_heads,
|
84 |
+
dim_head,
|
85 |
+
name=f"input_ds{ds}",
|
86 |
+
depth=params.transformer_depth[level],
|
87 |
+
context_dim=params.context_dim,
|
88 |
+
unflatten_names=params.unflatten_names,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
self.input_blocks.append(TimestepEmbedSequential(*input_layers))
|
92 |
+
self._feature_size += ch
|
93 |
+
input_block_chans.append(ch)
|
94 |
+
if level != len(params.channel_mult) - 1:
|
95 |
+
ds *= 2
|
96 |
+
out_ch = ch
|
97 |
+
self.input_blocks.append(
|
98 |
+
TimestepEmbedSequential(Downsample(ch, out_channels=out_ch))
|
99 |
+
)
|
100 |
+
ch = out_ch
|
101 |
+
input_block_chans.append(ch)
|
102 |
+
self._feature_size += ch
|
103 |
+
|
104 |
+
num_heads = ch // params.num_head_channels
|
105 |
+
dim_head = params.num_head_channels
|
106 |
+
|
107 |
+
self.middle_block = TimestepEmbedSequential(
|
108 |
+
ResBlock(
|
109 |
+
channels=ch,
|
110 |
+
emb_channels=time_embed_dim,
|
111 |
+
out_channels=None,
|
112 |
+
dense_in_channels=params.dense_in_channels,
|
113 |
+
dropout=params.dropout,
|
114 |
+
),
|
115 |
+
MultiviewTransformer(
|
116 |
+
ch,
|
117 |
+
num_heads,
|
118 |
+
dim_head,
|
119 |
+
name=f"middle_ds{ds}",
|
120 |
+
depth=params.transformer_depth[-1],
|
121 |
+
context_dim=params.context_dim,
|
122 |
+
unflatten_names=params.unflatten_names,
|
123 |
+
),
|
124 |
+
ResBlock(
|
125 |
+
channels=ch,
|
126 |
+
emb_channels=time_embed_dim,
|
127 |
+
out_channels=None,
|
128 |
+
dense_in_channels=params.dense_in_channels,
|
129 |
+
dropout=params.dropout,
|
130 |
+
),
|
131 |
+
)
|
132 |
+
self._feature_size += ch
|
133 |
+
|
134 |
+
self.output_blocks = nn.ModuleList([])
|
135 |
+
for level, mult in list(enumerate(params.channel_mult))[::-1]:
|
136 |
+
for i in range(params.num_res_blocks + 1):
|
137 |
+
ich = input_block_chans.pop()
|
138 |
+
output_layers: list[ResBlock | MultiviewTransformer | Upsample] = [
|
139 |
+
ResBlock(
|
140 |
+
channels=ch + ich,
|
141 |
+
emb_channels=time_embed_dim,
|
142 |
+
out_channels=params.model_channels * mult,
|
143 |
+
dense_in_channels=params.dense_in_channels,
|
144 |
+
dropout=params.dropout,
|
145 |
+
)
|
146 |
+
]
|
147 |
+
ch = params.model_channels * mult
|
148 |
+
if ds in params.attention_resolutions:
|
149 |
+
num_heads = ch // params.num_head_channels
|
150 |
+
dim_head = params.num_head_channels
|
151 |
+
|
152 |
+
output_layers.append(
|
153 |
+
MultiviewTransformer(
|
154 |
+
ch,
|
155 |
+
num_heads,
|
156 |
+
dim_head,
|
157 |
+
name=f"output_ds{ds}",
|
158 |
+
depth=params.transformer_depth[level],
|
159 |
+
context_dim=params.context_dim,
|
160 |
+
unflatten_names=params.unflatten_names,
|
161 |
+
)
|
162 |
+
)
|
163 |
+
if level and i == params.num_res_blocks:
|
164 |
+
out_ch = ch
|
165 |
+
ds //= 2
|
166 |
+
output_layers.append(Upsample(ch, out_ch))
|
167 |
+
self.output_blocks.append(TimestepEmbedSequential(*output_layers))
|
168 |
+
self._feature_size += ch
|
169 |
+
|
170 |
+
self.out = nn.Sequential(
|
171 |
+
GroupNorm32(32, ch),
|
172 |
+
nn.SiLU(),
|
173 |
+
nn.Conv2d(self.model_channels, params.out_channels, 3, padding=1),
|
174 |
+
)
|
175 |
+
|
176 |
+
def forward(
|
177 |
+
self,
|
178 |
+
x: torch.Tensor,
|
179 |
+
t: torch.Tensor,
|
180 |
+
y: torch.Tensor,
|
181 |
+
dense_y: torch.Tensor,
|
182 |
+
num_frames: int | None = None,
|
183 |
+
) -> torch.Tensor:
|
184 |
+
num_frames = num_frames or self.params.num_frames
|
185 |
+
t_emb = timestep_embedding(t, self.model_channels)
|
186 |
+
t_emb = self.time_embed(t_emb)
|
187 |
+
|
188 |
+
hs = []
|
189 |
+
h = x
|
190 |
+
for module in self.input_blocks:
|
191 |
+
h = module(
|
192 |
+
h,
|
193 |
+
emb=t_emb,
|
194 |
+
context=y,
|
195 |
+
dense_emb=dense_y,
|
196 |
+
num_frames=num_frames,
|
197 |
+
)
|
198 |
+
hs.append(h)
|
199 |
+
h = self.middle_block(
|
200 |
+
h,
|
201 |
+
emb=t_emb,
|
202 |
+
context=y,
|
203 |
+
dense_emb=dense_y,
|
204 |
+
num_frames=num_frames,
|
205 |
+
)
|
206 |
+
for module in self.output_blocks:
|
207 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
208 |
+
h = module(
|
209 |
+
h,
|
210 |
+
emb=t_emb,
|
211 |
+
context=y,
|
212 |
+
dense_emb=dense_y,
|
213 |
+
num_frames=num_frames,
|
214 |
+
)
|
215 |
+
h = h.type(x.dtype)
|
216 |
+
return self.out(h)
|
217 |
+
|
218 |
+
|
219 |
+
class SGMWrapper(nn.Module):
|
220 |
+
def __init__(self, module: Seva):
|
221 |
+
super().__init__()
|
222 |
+
self.module = module
|
223 |
+
|
224 |
+
def forward(
|
225 |
+
self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs
|
226 |
+
) -> torch.Tensor:
|
227 |
+
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1)
|
228 |
+
return self.module(
|
229 |
+
x,
|
230 |
+
t=t,
|
231 |
+
y=c["crossattn"],
|
232 |
+
dense_y=c["dense_vector"],
|
233 |
+
**kwargs,
|
234 |
+
)
|
seva/modules/__init__.py
ADDED
File without changes
|
seva/modules/autoencoder.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.models import AutoencoderKL # type: ignore
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
class AutoEncoder(nn.Module):
|
7 |
+
scale_factor: float = 0.18215
|
8 |
+
downsample: int = 8
|
9 |
+
|
10 |
+
def __init__(self, chunk_size: int | None = None):
|
11 |
+
super().__init__()
|
12 |
+
self.module = AutoencoderKL.from_pretrained(
|
13 |
+
"stabilityai/stable-diffusion-2-1-base",
|
14 |
+
subfolder="vae",
|
15 |
+
force_download=False,
|
16 |
+
low_cpu_mem_usage=False,
|
17 |
+
)
|
18 |
+
self.module.eval().requires_grad_(False) # type: ignore
|
19 |
+
self.chunk_size = chunk_size
|
20 |
+
|
21 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
22 |
+
return (
|
23 |
+
self.module.encode(x).latent_dist.mean # type: ignore
|
24 |
+
* self.scale_factor
|
25 |
+
)
|
26 |
+
|
27 |
+
def encode(self, x: torch.Tensor, chunk_size: int | None = None) -> torch.Tensor:
|
28 |
+
chunk_size = chunk_size or self.chunk_size
|
29 |
+
if chunk_size is not None:
|
30 |
+
return torch.cat(
|
31 |
+
[self._encode(x_chunk) for x_chunk in x.split(chunk_size)],
|
32 |
+
dim=0,
|
33 |
+
)
|
34 |
+
else:
|
35 |
+
return self._encode(x)
|
36 |
+
|
37 |
+
def _decode(self, z: torch.Tensor) -> torch.Tensor:
|
38 |
+
return self.module.decode(z / self.scale_factor).sample # type: ignore
|
39 |
+
|
40 |
+
def decode(self, z: torch.Tensor, chunk_size: int | None = None) -> torch.Tensor:
|
41 |
+
chunk_size = chunk_size or self.chunk_size
|
42 |
+
if chunk_size is not None:
|
43 |
+
return torch.cat(
|
44 |
+
[self._decode(z_chunk) for z_chunk in z.split(chunk_size)],
|
45 |
+
dim=0,
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
return self._decode(z)
|
49 |
+
|
50 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
51 |
+
return self.decode(self.encode(x))
|
seva/modules/conditioner.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kornia
|
2 |
+
import open_clip
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
class CLIPConditioner(nn.Module):
|
8 |
+
mean: torch.Tensor
|
9 |
+
std: torch.Tensor
|
10 |
+
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
self.module = open_clip.create_model_and_transforms(
|
14 |
+
"ViT-H-14", pretrained="laion2b_s32b_b79k"
|
15 |
+
)[0]
|
16 |
+
self.module.eval().requires_grad_(False) # type: ignore
|
17 |
+
self.register_buffer(
|
18 |
+
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
19 |
+
)
|
20 |
+
self.register_buffer(
|
21 |
+
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
22 |
+
)
|
23 |
+
|
24 |
+
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
25 |
+
x = kornia.geometry.resize(
|
26 |
+
x,
|
27 |
+
(224, 224),
|
28 |
+
interpolation="bicubic",
|
29 |
+
align_corners=True,
|
30 |
+
antialias=True,
|
31 |
+
)
|
32 |
+
x = (x + 1.0) / 2.0
|
33 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
34 |
+
return x
|
35 |
+
|
36 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
37 |
+
x = self.preprocess(x)
|
38 |
+
x = self.module.encode_image(x)
|
39 |
+
return x
|
seva/modules/layers.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import repeat
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from .transformer import MultiviewTransformer
|
9 |
+
|
10 |
+
|
11 |
+
def timestep_embedding(
|
12 |
+
timesteps: torch.Tensor,
|
13 |
+
dim: int,
|
14 |
+
max_period: int = 10000,
|
15 |
+
repeat_only: bool = False,
|
16 |
+
) -> torch.Tensor:
|
17 |
+
if not repeat_only:
|
18 |
+
half = dim // 2
|
19 |
+
freqs = torch.exp(
|
20 |
+
-math.log(max_period)
|
21 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
22 |
+
/ half
|
23 |
+
).to(device=timesteps.device)
|
24 |
+
args = timesteps[:, None].float() * freqs[None]
|
25 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
26 |
+
if dim % 2:
|
27 |
+
embedding = torch.cat(
|
28 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
29 |
+
)
|
30 |
+
else:
|
31 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
32 |
+
return embedding
|
33 |
+
|
34 |
+
|
35 |
+
class Upsample(nn.Module):
|
36 |
+
def __init__(self, channels: int, out_channels: int | None = None):
|
37 |
+
super().__init__()
|
38 |
+
self.channels = channels
|
39 |
+
self.out_channels = out_channels or channels
|
40 |
+
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, 1, 1)
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
43 |
+
assert x.shape[1] == self.channels
|
44 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
45 |
+
x = self.conv(x)
|
46 |
+
return x
|
47 |
+
|
48 |
+
|
49 |
+
class Downsample(nn.Module):
|
50 |
+
def __init__(self, channels: int, out_channels: int | None = None):
|
51 |
+
super().__init__()
|
52 |
+
self.channels = channels
|
53 |
+
self.out_channels = out_channels or channels
|
54 |
+
self.op = nn.Conv2d(self.channels, self.out_channels, 3, 2, 1)
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
57 |
+
assert x.shape[1] == self.channels
|
58 |
+
return self.op(x)
|
59 |
+
|
60 |
+
|
61 |
+
class GroupNorm32(nn.GroupNorm):
|
62 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
63 |
+
return super().forward(input.float()).type(input.dtype)
|
64 |
+
|
65 |
+
|
66 |
+
class TimestepEmbedSequential(nn.Sequential):
|
67 |
+
def forward( # type: ignore[override]
|
68 |
+
self,
|
69 |
+
x: torch.Tensor,
|
70 |
+
emb: torch.Tensor,
|
71 |
+
context: torch.Tensor,
|
72 |
+
dense_emb: torch.Tensor,
|
73 |
+
num_frames: int,
|
74 |
+
) -> torch.Tensor:
|
75 |
+
for layer in self:
|
76 |
+
if isinstance(layer, MultiviewTransformer):
|
77 |
+
assert num_frames is not None
|
78 |
+
x = layer(x, context, num_frames)
|
79 |
+
elif isinstance(layer, ResBlock):
|
80 |
+
x = layer(x, emb, dense_emb)
|
81 |
+
else:
|
82 |
+
x = layer(x)
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class ResBlock(nn.Module):
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
channels: int,
|
90 |
+
emb_channels: int,
|
91 |
+
out_channels: int | None,
|
92 |
+
dense_in_channels: int,
|
93 |
+
dropout: float,
|
94 |
+
):
|
95 |
+
super().__init__()
|
96 |
+
out_channels = out_channels or channels
|
97 |
+
|
98 |
+
self.in_layers = nn.Sequential(
|
99 |
+
GroupNorm32(32, channels),
|
100 |
+
nn.SiLU(),
|
101 |
+
nn.Conv2d(channels, out_channels, 3, 1, 1),
|
102 |
+
)
|
103 |
+
self.emb_layers = nn.Sequential(
|
104 |
+
nn.SiLU(), nn.Linear(emb_channels, out_channels)
|
105 |
+
)
|
106 |
+
self.dense_emb_layers = nn.Sequential(
|
107 |
+
nn.Conv2d(dense_in_channels, 2 * channels, 1, 1, 0)
|
108 |
+
)
|
109 |
+
self.out_layers = nn.Sequential(
|
110 |
+
GroupNorm32(32, out_channels),
|
111 |
+
nn.SiLU(),
|
112 |
+
nn.Dropout(dropout),
|
113 |
+
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
|
114 |
+
)
|
115 |
+
if out_channels == channels:
|
116 |
+
self.skip_connection = nn.Identity()
|
117 |
+
else:
|
118 |
+
self.skip_connection = nn.Conv2d(channels, out_channels, 1, 1, 0)
|
119 |
+
|
120 |
+
def forward(
|
121 |
+
self, x: torch.Tensor, emb: torch.Tensor, dense_emb: torch.Tensor
|
122 |
+
) -> torch.Tensor:
|
123 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
124 |
+
h = in_rest(x)
|
125 |
+
dense = self.dense_emb_layers(
|
126 |
+
F.interpolate(
|
127 |
+
dense_emb, size=h.shape[2:], mode="bilinear", align_corners=True
|
128 |
+
)
|
129 |
+
).type(h.dtype)
|
130 |
+
dense_scale, dense_shift = torch.chunk(dense, 2, dim=1)
|
131 |
+
h = h * (1 + dense_scale) + dense_shift
|
132 |
+
h = in_conv(h)
|
133 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
134 |
+
# TODO(hangg): Optimize this?
|
135 |
+
while len(emb_out.shape) < len(h.shape):
|
136 |
+
emb_out = emb_out[..., None]
|
137 |
+
h = h + emb_out
|
138 |
+
h = self.out_layers(h)
|
139 |
+
h = self.skip_connection(x) + h
|
140 |
+
return h
|
seva/modules/preprocessor.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
import sys
|
5 |
+
from typing import cast
|
6 |
+
|
7 |
+
import imageio.v3 as iio
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
class Dust3rPipeline(object):
|
13 |
+
def __init__(self, device: str | torch.device = "cuda"):
|
14 |
+
submodule_path = osp.realpath(
|
15 |
+
osp.join(osp.dirname(__file__), "../../third_party/dust3r/")
|
16 |
+
)
|
17 |
+
if submodule_path not in sys.path:
|
18 |
+
sys.path.insert(0, submodule_path)
|
19 |
+
try:
|
20 |
+
with open(os.devnull, "w") as f, contextlib.redirect_stdout(f):
|
21 |
+
from dust3r.cloud_opt import ( # type: ignore[import]
|
22 |
+
GlobalAlignerMode,
|
23 |
+
global_aligner,
|
24 |
+
)
|
25 |
+
from dust3r.image_pairs import make_pairs # type: ignore[import]
|
26 |
+
from dust3r.inference import inference # type: ignore[import]
|
27 |
+
from dust3r.model import AsymmetricCroCo3DStereo # type: ignore[import]
|
28 |
+
from dust3r.utils.image import load_images # type: ignore[import]
|
29 |
+
except ImportError:
|
30 |
+
raise ImportError(
|
31 |
+
"Missing required submodule: 'dust3r'. Please ensure that all submodules are properly set up.\n\n"
|
32 |
+
"To initialize them, run the following command in the project root:\n"
|
33 |
+
" git submodule update --init --recursive"
|
34 |
+
)
|
35 |
+
|
36 |
+
self.device = torch.device(device)
|
37 |
+
self.model = AsymmetricCroCo3DStereo.from_pretrained(
|
38 |
+
"naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
|
39 |
+
).to(self.device)
|
40 |
+
|
41 |
+
self._GlobalAlignerMode = GlobalAlignerMode
|
42 |
+
self._global_aligner = global_aligner
|
43 |
+
self._make_pairs = make_pairs
|
44 |
+
self._inference = inference
|
45 |
+
self._load_images = load_images
|
46 |
+
|
47 |
+
def infer_cameras_and_points(
|
48 |
+
self,
|
49 |
+
img_paths: list[str],
|
50 |
+
Ks: list[list] = None,
|
51 |
+
c2ws: list[list] = None,
|
52 |
+
batch_size: int = 16,
|
53 |
+
schedule: str = "cosine",
|
54 |
+
lr: float = 0.01,
|
55 |
+
niter: int = 500,
|
56 |
+
min_conf_thr: int = 3,
|
57 |
+
) -> tuple[
|
58 |
+
list[np.ndarray], np.ndarray, np.ndarray, list[np.ndarray], list[np.ndarray]
|
59 |
+
]:
|
60 |
+
num_img = len(img_paths)
|
61 |
+
if num_img == 1:
|
62 |
+
print("Only one image found, duplicating it to create a stereo pair.")
|
63 |
+
img_paths = img_paths * 2
|
64 |
+
|
65 |
+
images = self._load_images(img_paths, size=512)
|
66 |
+
pairs = self._make_pairs(
|
67 |
+
images,
|
68 |
+
scene_graph="complete",
|
69 |
+
prefilter=None,
|
70 |
+
symmetrize=True,
|
71 |
+
)
|
72 |
+
output = self._inference(pairs, self.model, self.device, batch_size=batch_size)
|
73 |
+
|
74 |
+
ori_imgs = [iio.imread(p) for p in img_paths]
|
75 |
+
ori_img_whs = np.array([img.shape[1::-1] for img in ori_imgs])
|
76 |
+
img_whs = np.concatenate([image["true_shape"][:, ::-1] for image in images], 0)
|
77 |
+
|
78 |
+
scene = self._global_aligner(
|
79 |
+
output,
|
80 |
+
device=self.device,
|
81 |
+
mode=self._GlobalAlignerMode.PointCloudOptimizer,
|
82 |
+
same_focals=True,
|
83 |
+
optimize_pp=False, # True,
|
84 |
+
min_conf_thr=min_conf_thr,
|
85 |
+
)
|
86 |
+
|
87 |
+
# if Ks is not None:
|
88 |
+
# scene.preset_focal(
|
89 |
+
# torch.tensor([[K[0, 0], K[1, 1]] for K in Ks])
|
90 |
+
# )
|
91 |
+
|
92 |
+
if c2ws is not None:
|
93 |
+
scene.preset_pose(c2ws)
|
94 |
+
|
95 |
+
_ = scene.compute_global_alignment(
|
96 |
+
init="msp", niter=niter, schedule=schedule, lr=lr
|
97 |
+
)
|
98 |
+
|
99 |
+
imgs = cast(list, scene.imgs)
|
100 |
+
Ks = scene.get_intrinsics().detach().cpu().numpy().copy()
|
101 |
+
c2ws = scene.get_im_poses().detach().cpu().numpy() # type: ignore
|
102 |
+
pts3d = [x.detach().cpu().numpy() for x in scene.get_pts3d()] # type: ignore
|
103 |
+
if num_img > 1:
|
104 |
+
masks = [x.detach().cpu().numpy() for x in scene.get_masks()]
|
105 |
+
points = [p[m] for p, m in zip(pts3d, masks)]
|
106 |
+
point_colors = [img[m] for img, m in zip(imgs, masks)]
|
107 |
+
else:
|
108 |
+
points = [p.reshape(-1, 3) for p in pts3d]
|
109 |
+
point_colors = [img.reshape(-1, 3) for img in imgs]
|
110 |
+
|
111 |
+
# Convert back to the original image size.
|
112 |
+
imgs = ori_imgs
|
113 |
+
Ks[:, :2, -1] *= ori_img_whs / img_whs
|
114 |
+
Ks[:, :2, :2] *= (ori_img_whs / img_whs).mean(axis=1, keepdims=True)[..., None]
|
115 |
+
|
116 |
+
return imgs, Ks, c2ws, points, point_colors
|
seva/modules/transformer.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from einops import rearrange, repeat
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
6 |
+
|
7 |
+
|
8 |
+
class GEGLU(nn.Module):
|
9 |
+
def __init__(self, dim_in: int, dim_out: int):
|
10 |
+
super().__init__()
|
11 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
12 |
+
|
13 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
14 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
15 |
+
return x * F.gelu(gate)
|
16 |
+
|
17 |
+
|
18 |
+
class FeedForward(nn.Module):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
dim: int,
|
22 |
+
dim_out: int | None = None,
|
23 |
+
mult: int = 4,
|
24 |
+
dropout: float = 0.0,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
inner_dim = int(dim * mult)
|
28 |
+
dim_out = dim_out or dim
|
29 |
+
self.net = nn.Sequential(
|
30 |
+
GEGLU(dim, inner_dim), nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
34 |
+
return self.net(x)
|
35 |
+
|
36 |
+
|
37 |
+
class Attention(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
query_dim: int,
|
41 |
+
context_dim: int | None = None,
|
42 |
+
heads: int = 8,
|
43 |
+
dim_head: int = 64,
|
44 |
+
dropout: float = 0.0,
|
45 |
+
):
|
46 |
+
super().__init__()
|
47 |
+
self.heads = heads
|
48 |
+
self.dim_head = dim_head
|
49 |
+
inner_dim = dim_head * heads
|
50 |
+
context_dim = context_dim or query_dim
|
51 |
+
|
52 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
53 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
54 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
55 |
+
self.to_out = nn.Sequential(
|
56 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self, x: torch.Tensor, context: torch.Tensor | None = None
|
61 |
+
) -> torch.Tensor:
|
62 |
+
q = self.to_q(x)
|
63 |
+
context = context if context is not None else x
|
64 |
+
k = self.to_k(context)
|
65 |
+
v = self.to_v(context)
|
66 |
+
q, k, v = map(
|
67 |
+
lambda t: rearrange(t, "b l (h d) -> b h l d", h=self.heads),
|
68 |
+
(q, k, v),
|
69 |
+
)
|
70 |
+
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
|
71 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
72 |
+
out = rearrange(out, "b h l d -> b l (h d)")
|
73 |
+
out = self.to_out(out)
|
74 |
+
return out
|
75 |
+
|
76 |
+
|
77 |
+
class TransformerBlock(nn.Module):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
dim: int,
|
81 |
+
n_heads: int,
|
82 |
+
d_head: int,
|
83 |
+
context_dim: int,
|
84 |
+
dropout: float = 0.0,
|
85 |
+
):
|
86 |
+
super().__init__()
|
87 |
+
self.attn1 = Attention(
|
88 |
+
query_dim=dim,
|
89 |
+
context_dim=None,
|
90 |
+
heads=n_heads,
|
91 |
+
dim_head=d_head,
|
92 |
+
dropout=dropout,
|
93 |
+
)
|
94 |
+
self.ff = FeedForward(dim, dropout=dropout)
|
95 |
+
self.attn2 = Attention(
|
96 |
+
query_dim=dim,
|
97 |
+
context_dim=context_dim,
|
98 |
+
heads=n_heads,
|
99 |
+
dim_head=d_head,
|
100 |
+
dropout=dropout,
|
101 |
+
)
|
102 |
+
self.norm1 = nn.LayerNorm(dim)
|
103 |
+
self.norm2 = nn.LayerNorm(dim)
|
104 |
+
self.norm3 = nn.LayerNorm(dim)
|
105 |
+
|
106 |
+
def forward(self, x: torch.Tensor, context: torch.Tensor) -> torch.Tensor:
|
107 |
+
x = self.attn1(self.norm1(x)) + x
|
108 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
109 |
+
x = self.ff(self.norm3(x)) + x
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class TransformerBlockTimeMix(nn.Module):
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
dim: int,
|
117 |
+
n_heads: int,
|
118 |
+
d_head: int,
|
119 |
+
context_dim: int,
|
120 |
+
dropout: float = 0.0,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
inner_dim = n_heads * d_head
|
124 |
+
self.norm_in = nn.LayerNorm(dim)
|
125 |
+
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout)
|
126 |
+
self.attn1 = Attention(
|
127 |
+
query_dim=inner_dim,
|
128 |
+
context_dim=None,
|
129 |
+
heads=n_heads,
|
130 |
+
dim_head=d_head,
|
131 |
+
dropout=dropout,
|
132 |
+
)
|
133 |
+
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout)
|
134 |
+
self.attn2 = Attention(
|
135 |
+
query_dim=inner_dim,
|
136 |
+
context_dim=context_dim,
|
137 |
+
heads=n_heads,
|
138 |
+
dim_head=d_head,
|
139 |
+
dropout=dropout,
|
140 |
+
)
|
141 |
+
self.norm1 = nn.LayerNorm(inner_dim)
|
142 |
+
self.norm2 = nn.LayerNorm(inner_dim)
|
143 |
+
self.norm3 = nn.LayerNorm(inner_dim)
|
144 |
+
|
145 |
+
def forward(
|
146 |
+
self, x: torch.Tensor, context: torch.Tensor, num_frames: int
|
147 |
+
) -> torch.Tensor:
|
148 |
+
_, s, _ = x.shape
|
149 |
+
x = rearrange(x, "(b t) s c -> (b s) t c", t=num_frames)
|
150 |
+
x = self.ff_in(self.norm_in(x)) + x
|
151 |
+
x = self.attn1(self.norm1(x), context=None) + x
|
152 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
153 |
+
x = self.ff(self.norm3(x))
|
154 |
+
x = rearrange(x, "(b s) t c -> (b t) s c", s=s)
|
155 |
+
return x
|
156 |
+
|
157 |
+
|
158 |
+
class SkipConnect(nn.Module):
|
159 |
+
def __init__(self):
|
160 |
+
super().__init__()
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self, x_spatial: torch.Tensor, x_temporal: torch.Tensor
|
164 |
+
) -> torch.Tensor:
|
165 |
+
return x_spatial + x_temporal
|
166 |
+
|
167 |
+
|
168 |
+
class MultiviewTransformer(nn.Module):
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
in_channels: int,
|
172 |
+
n_heads: int,
|
173 |
+
d_head: int,
|
174 |
+
name: str,
|
175 |
+
unflatten_names: list[str] = [],
|
176 |
+
depth: int = 1,
|
177 |
+
context_dim: int = 1024,
|
178 |
+
dropout: float = 0.0,
|
179 |
+
):
|
180 |
+
super().__init__()
|
181 |
+
self.in_channels = in_channels
|
182 |
+
self.name = name
|
183 |
+
self.unflatten_names = unflatten_names
|
184 |
+
|
185 |
+
inner_dim = n_heads * d_head
|
186 |
+
self.norm = nn.GroupNorm(32, in_channels, eps=1e-6)
|
187 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
188 |
+
self.transformer_blocks = nn.ModuleList(
|
189 |
+
[
|
190 |
+
TransformerBlock(
|
191 |
+
inner_dim,
|
192 |
+
n_heads,
|
193 |
+
d_head,
|
194 |
+
context_dim=context_dim,
|
195 |
+
dropout=dropout,
|
196 |
+
)
|
197 |
+
for _ in range(depth)
|
198 |
+
]
|
199 |
+
)
|
200 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
201 |
+
self.time_mixer = SkipConnect()
|
202 |
+
self.time_mix_blocks = nn.ModuleList(
|
203 |
+
[
|
204 |
+
TransformerBlockTimeMix(
|
205 |
+
inner_dim,
|
206 |
+
n_heads,
|
207 |
+
d_head,
|
208 |
+
context_dim=context_dim,
|
209 |
+
dropout=dropout,
|
210 |
+
)
|
211 |
+
for _ in range(depth)
|
212 |
+
]
|
213 |
+
)
|
214 |
+
|
215 |
+
def forward(
|
216 |
+
self, x: torch.Tensor, context: torch.Tensor, num_frames: int
|
217 |
+
) -> torch.Tensor:
|
218 |
+
assert context.ndim == 3
|
219 |
+
_, _, h, w = x.shape
|
220 |
+
x_in = x
|
221 |
+
|
222 |
+
time_context = context
|
223 |
+
time_context_first_timestep = time_context[::num_frames]
|
224 |
+
time_context = repeat(
|
225 |
+
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
|
226 |
+
)
|
227 |
+
|
228 |
+
if self.name in self.unflatten_names:
|
229 |
+
context = context[::num_frames]
|
230 |
+
|
231 |
+
x = self.norm(x)
|
232 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
233 |
+
x = self.proj_in(x)
|
234 |
+
|
235 |
+
for block, mix_block in zip(self.transformer_blocks, self.time_mix_blocks):
|
236 |
+
if self.name in self.unflatten_names:
|
237 |
+
x = rearrange(x, "(b t) (h w) c -> b (t h w) c", t=num_frames, h=h, w=w)
|
238 |
+
x = block(x, context=context)
|
239 |
+
if self.name in self.unflatten_names:
|
240 |
+
x = rearrange(x, "b (t h w) c -> (b t) (h w) c", t=num_frames, h=h, w=w)
|
241 |
+
x_mix = mix_block(x, context=time_context, num_frames=num_frames)
|
242 |
+
x = self.time_mixer(x_spatial=x, x_temporal=x_mix)
|
243 |
+
|
244 |
+
x = self.proj_out(x)
|
245 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
246 |
+
out = x + x_in
|
247 |
+
return out
|
seva/sampling.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from einops import rearrange
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from seva.geometry import get_camera_dist
|
8 |
+
|
9 |
+
|
10 |
+
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
|
11 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
12 |
+
dims_to_append = target_dims - x.ndim
|
13 |
+
if dims_to_append < 0:
|
14 |
+
raise ValueError(
|
15 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
16 |
+
)
|
17 |
+
return x[(...,) + (None,) * dims_to_append]
|
18 |
+
|
19 |
+
|
20 |
+
def append_zero(x: torch.Tensor) -> torch.Tensor:
|
21 |
+
return torch.cat([x, x.new_zeros([1])])
|
22 |
+
|
23 |
+
|
24 |
+
def to_d(x: torch.Tensor, sigma: torch.Tensor, denoised: torch.Tensor) -> torch.Tensor:
|
25 |
+
return (x - denoised) / append_dims(sigma, x.ndim)
|
26 |
+
|
27 |
+
|
28 |
+
def make_betas(
|
29 |
+
num_timesteps: int, linear_start: float = 1e-4, linear_end: float = 2e-2
|
30 |
+
) -> np.ndarray:
|
31 |
+
betas = (
|
32 |
+
torch.linspace(
|
33 |
+
linear_start**0.5, linear_end**0.5, num_timesteps, dtype=torch.float64
|
34 |
+
)
|
35 |
+
** 2
|
36 |
+
)
|
37 |
+
return betas.numpy()
|
38 |
+
|
39 |
+
|
40 |
+
def generate_roughly_equally_spaced_steps(
|
41 |
+
num_substeps: int, max_step: int
|
42 |
+
) -> np.ndarray:
|
43 |
+
return np.linspace(max_step - 1, 0, num_substeps, endpoint=False).astype(int)[::-1]
|
44 |
+
|
45 |
+
|
46 |
+
class EpsScaling(object):
|
47 |
+
def __call__(
|
48 |
+
self, sigma: torch.Tensor
|
49 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
50 |
+
c_skip = torch.ones_like(sigma, device=sigma.device)
|
51 |
+
c_out = -sigma
|
52 |
+
c_in = 1 / (sigma**2 + 1.0) ** 0.5
|
53 |
+
c_noise = sigma.clone()
|
54 |
+
return c_skip, c_out, c_in, c_noise
|
55 |
+
|
56 |
+
|
57 |
+
class DDPMDiscretization(object):
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
linear_start: float = 5e-06,
|
61 |
+
linear_end: float = 0.012,
|
62 |
+
num_timesteps: int = 1000,
|
63 |
+
log_snr_shift: float | None = 2.4,
|
64 |
+
):
|
65 |
+
self.num_timesteps = num_timesteps
|
66 |
+
|
67 |
+
betas = make_betas(
|
68 |
+
num_timesteps,
|
69 |
+
linear_start=linear_start,
|
70 |
+
linear_end=linear_end,
|
71 |
+
)
|
72 |
+
self.log_snr_shift = log_snr_shift
|
73 |
+
|
74 |
+
alphas = 1.0 - betas # first alpha here is on data side
|
75 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
76 |
+
|
77 |
+
def get_sigmas(self, n: int, device: str | torch.device = "cpu") -> torch.Tensor:
|
78 |
+
if n < self.num_timesteps:
|
79 |
+
timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps)
|
80 |
+
alphas_cumprod = self.alphas_cumprod[timesteps]
|
81 |
+
elif n == self.num_timesteps:
|
82 |
+
alphas_cumprod = self.alphas_cumprod
|
83 |
+
else:
|
84 |
+
raise ValueError(f"Expected n <= {self.num_timesteps}, but got n = {n}.")
|
85 |
+
|
86 |
+
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
87 |
+
if self.log_snr_shift is not None:
|
88 |
+
sigmas = sigmas * np.exp(self.log_snr_shift)
|
89 |
+
return torch.flip(
|
90 |
+
torch.tensor(sigmas, dtype=torch.float32, device=device), (0,)
|
91 |
+
)
|
92 |
+
|
93 |
+
def __call__(
|
94 |
+
self,
|
95 |
+
n: int,
|
96 |
+
do_append_zero: bool = True,
|
97 |
+
flip: bool = False,
|
98 |
+
device: str | torch.device = "cpu",
|
99 |
+
) -> torch.Tensor:
|
100 |
+
sigmas = self.get_sigmas(n, device=device)
|
101 |
+
sigmas = append_zero(sigmas) if do_append_zero else sigmas
|
102 |
+
return sigmas if not flip else torch.flip(sigmas, (0,))
|
103 |
+
|
104 |
+
|
105 |
+
class DiscreteDenoiser(object):
|
106 |
+
sigmas: torch.Tensor
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
discretization: DDPMDiscretization,
|
111 |
+
num_idx: int = 1000,
|
112 |
+
device: str | torch.device = "cpu",
|
113 |
+
):
|
114 |
+
self.scaling = EpsScaling()
|
115 |
+
self.discretization = discretization
|
116 |
+
self.num_idx = num_idx
|
117 |
+
self.device = device
|
118 |
+
|
119 |
+
self.register_sigmas()
|
120 |
+
|
121 |
+
def register_sigmas(self):
|
122 |
+
self.sigmas = self.discretization(
|
123 |
+
self.num_idx, do_append_zero=False, flip=True, device=self.device
|
124 |
+
)
|
125 |
+
|
126 |
+
def sigma_to_idx(self, sigma: torch.Tensor) -> torch.Tensor:
|
127 |
+
dists = sigma - self.sigmas[:, None]
|
128 |
+
return dists.abs().argmin(dim=0).view(sigma.shape)
|
129 |
+
|
130 |
+
def idx_to_sigma(self, idx: torch.Tensor | int) -> torch.Tensor:
|
131 |
+
return self.sigmas[idx]
|
132 |
+
|
133 |
+
def __call__(
|
134 |
+
self,
|
135 |
+
network: nn.Module,
|
136 |
+
input: torch.Tensor,
|
137 |
+
sigma: torch.Tensor,
|
138 |
+
cond: dict,
|
139 |
+
**additional_model_inputs,
|
140 |
+
) -> torch.Tensor:
|
141 |
+
sigma = self.idx_to_sigma(self.sigma_to_idx(sigma))
|
142 |
+
sigma_shape = sigma.shape
|
143 |
+
sigma = append_dims(sigma, input.ndim)
|
144 |
+
c_skip, c_out, c_in, c_noise = self.scaling(sigma)
|
145 |
+
c_noise = self.sigma_to_idx(c_noise.reshape(sigma_shape))
|
146 |
+
if "replace" in cond:
|
147 |
+
x, mask = cond.pop("replace").split((input.shape[1], 1), dim=1)
|
148 |
+
input = input * (1 - mask) + x * mask
|
149 |
+
return (
|
150 |
+
network(input * c_in, c_noise, cond, **additional_model_inputs) * c_out
|
151 |
+
+ input * c_skip
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
class ConstantScaleRule(object):
|
156 |
+
def __call__(self, scale: float | torch.Tensor) -> float | torch.Tensor:
|
157 |
+
return scale
|
158 |
+
|
159 |
+
|
160 |
+
class MultiviewScaleRule(object):
|
161 |
+
def __init__(self, min_scale: float = 1.0):
|
162 |
+
self.min_scale = min_scale
|
163 |
+
|
164 |
+
def __call__(
|
165 |
+
self,
|
166 |
+
scale: float | torch.Tensor,
|
167 |
+
c2w: torch.Tensor,
|
168 |
+
K: torch.Tensor,
|
169 |
+
input_frame_mask: torch.Tensor,
|
170 |
+
) -> torch.Tensor:
|
171 |
+
c2w_input = c2w[input_frame_mask]
|
172 |
+
rotation_diff = get_camera_dist(c2w, c2w_input, mode="rotation").min(-1).values
|
173 |
+
translation_diff = (
|
174 |
+
get_camera_dist(c2w, c2w_input, mode="translation").min(-1).values
|
175 |
+
)
|
176 |
+
K_diff = (
|
177 |
+
((K[:, None] - K[input_frame_mask][None]).flatten(-2) == 0).all(-1).any(-1)
|
178 |
+
)
|
179 |
+
close_frame = (rotation_diff < 10.0) & (translation_diff < 1e-5) & K_diff
|
180 |
+
if isinstance(scale, torch.Tensor):
|
181 |
+
scale = scale.clone()
|
182 |
+
scale[close_frame] = self.min_scale
|
183 |
+
elif isinstance(scale, float):
|
184 |
+
scale = torch.where(close_frame, self.min_scale, scale)
|
185 |
+
else:
|
186 |
+
raise ValueError(f"Invalid scale type {type(scale)}.")
|
187 |
+
return scale
|
188 |
+
|
189 |
+
|
190 |
+
class ConstantScaleSchedule(object):
|
191 |
+
def __call__(
|
192 |
+
self, sigma: float | torch.Tensor, scale: float | torch.Tensor
|
193 |
+
) -> float | torch.Tensor:
|
194 |
+
if isinstance(sigma, float):
|
195 |
+
return scale
|
196 |
+
elif isinstance(sigma, torch.Tensor):
|
197 |
+
if len(sigma.shape) == 1 and isinstance(scale, torch.Tensor):
|
198 |
+
sigma = append_dims(sigma, scale.ndim)
|
199 |
+
return scale * torch.ones_like(sigma)
|
200 |
+
else:
|
201 |
+
raise ValueError(f"Invalid sigma type {type(sigma)}.")
|
202 |
+
|
203 |
+
|
204 |
+
class ConstantGuidance(object):
|
205 |
+
def __call__(
|
206 |
+
self,
|
207 |
+
uncond: torch.Tensor,
|
208 |
+
cond: torch.Tensor,
|
209 |
+
scale: float | torch.Tensor,
|
210 |
+
) -> torch.Tensor:
|
211 |
+
if isinstance(scale, torch.Tensor) and len(scale.shape) == 1:
|
212 |
+
scale = append_dims(scale, cond.ndim)
|
213 |
+
return uncond + scale * (cond - uncond)
|
214 |
+
|
215 |
+
|
216 |
+
class VanillaCFG(object):
|
217 |
+
def __init__(self):
|
218 |
+
self.scale_rule = ConstantScaleRule()
|
219 |
+
self.scale_schedule = ConstantScaleSchedule()
|
220 |
+
self.guidance = ConstantGuidance()
|
221 |
+
|
222 |
+
def __call__(
|
223 |
+
self, x: torch.Tensor, sigma: float | torch.Tensor, scale: float | torch.Tensor
|
224 |
+
) -> torch.Tensor:
|
225 |
+
x_u, x_c = x.chunk(2)
|
226 |
+
scale = self.scale_rule(scale)
|
227 |
+
scale_value = self.scale_schedule(sigma, scale)
|
228 |
+
x_pred = self.guidance(x_u, x_c, scale_value)
|
229 |
+
return x_pred
|
230 |
+
|
231 |
+
def prepare_inputs(
|
232 |
+
self, x: torch.Tensor, s: torch.Tensor, c: dict, uc: dict
|
233 |
+
) -> tuple[torch.Tensor, torch.Tensor, dict]:
|
234 |
+
c_out = dict()
|
235 |
+
|
236 |
+
for k in c:
|
237 |
+
if k in ["vector", "crossattn", "concat", "replace", "dense_vector"]:
|
238 |
+
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
239 |
+
else:
|
240 |
+
assert c[k] == uc[k]
|
241 |
+
c_out[k] = c[k]
|
242 |
+
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
243 |
+
|
244 |
+
|
245 |
+
class MultiviewCFG(VanillaCFG):
|
246 |
+
def __init__(self, cfg_min: float = 1.0):
|
247 |
+
self.scale_min = cfg_min
|
248 |
+
self.scale_rule = MultiviewScaleRule(min_scale=cfg_min)
|
249 |
+
self.scale_schedule = ConstantScaleSchedule()
|
250 |
+
self.guidance = ConstantGuidance()
|
251 |
+
|
252 |
+
def __call__( # type: ignore
|
253 |
+
self,
|
254 |
+
x: torch.Tensor,
|
255 |
+
sigma: float | torch.Tensor,
|
256 |
+
scale: float | torch.Tensor,
|
257 |
+
c2w: torch.Tensor,
|
258 |
+
K: torch.Tensor,
|
259 |
+
input_frame_mask: torch.Tensor,
|
260 |
+
) -> torch.Tensor:
|
261 |
+
x_u, x_c = x.chunk(2)
|
262 |
+
scale = self.scale_rule(scale, c2w, K, input_frame_mask)
|
263 |
+
scale_value = self.scale_schedule(sigma, scale)
|
264 |
+
x_pred = self.guidance(x_u, x_c, scale_value)
|
265 |
+
return x_pred
|
266 |
+
|
267 |
+
|
268 |
+
class MultiviewTemporalCFG(MultiviewCFG):
|
269 |
+
def __init__(self, num_frames: int, cfg_min: float = 1.0):
|
270 |
+
super().__init__(cfg_min=cfg_min)
|
271 |
+
|
272 |
+
self.num_frames = num_frames
|
273 |
+
distance_matrix = (
|
274 |
+
torch.arange(num_frames)[None] - torch.arange(num_frames)[:, None]
|
275 |
+
).abs()
|
276 |
+
self.distance_matrix = distance_matrix
|
277 |
+
|
278 |
+
def __call__(
|
279 |
+
self,
|
280 |
+
x: torch.Tensor,
|
281 |
+
sigma: float | torch.Tensor,
|
282 |
+
scale: float | torch.Tensor,
|
283 |
+
c2w: torch.Tensor,
|
284 |
+
K: torch.Tensor,
|
285 |
+
input_frame_mask: torch.Tensor,
|
286 |
+
) -> torch.Tensor:
|
287 |
+
input_frame_mask = rearrange(
|
288 |
+
input_frame_mask, "(b t) ... -> b t ...", t=self.num_frames
|
289 |
+
)
|
290 |
+
min_distance = (
|
291 |
+
self.distance_matrix[None].to(x.device)
|
292 |
+
+ (~input_frame_mask[:, None]) * self.num_frames
|
293 |
+
).min(-1)[0]
|
294 |
+
min_distance = min_distance / min_distance.max(-1, keepdim=True)[0].clamp(min=1)
|
295 |
+
scale = min_distance * (scale - self.scale_min) + self.scale_min
|
296 |
+
scale = rearrange(scale, "b t ... -> (b t) ...")
|
297 |
+
scale = append_dims(scale, x.ndim)
|
298 |
+
return super().__call__(x, sigma, scale, c2w, K, input_frame_mask.flatten(0, 1))
|
299 |
+
|
300 |
+
|
301 |
+
class EulerEDMSampler(object):
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
discretization: DDPMDiscretization,
|
305 |
+
guider: VanillaCFG | MultiviewCFG | MultiviewTemporalCFG,
|
306 |
+
num_steps: int | None = None,
|
307 |
+
verbose: bool = False,
|
308 |
+
device: str | torch.device = "cuda",
|
309 |
+
s_churn=0.0,
|
310 |
+
s_tmin=0.0,
|
311 |
+
s_tmax=float("inf"),
|
312 |
+
s_noise=1.0,
|
313 |
+
):
|
314 |
+
self.num_steps = num_steps
|
315 |
+
self.discretization = discretization
|
316 |
+
self.guider = guider
|
317 |
+
self.verbose = verbose
|
318 |
+
self.device = device
|
319 |
+
|
320 |
+
self.s_churn = s_churn
|
321 |
+
self.s_tmin = s_tmin
|
322 |
+
self.s_tmax = s_tmax
|
323 |
+
self.s_noise = s_noise
|
324 |
+
|
325 |
+
def prepare_sampling_loop(
|
326 |
+
self, x: torch.Tensor, cond: dict, uc: dict, num_steps: int | None = None
|
327 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, dict, dict]:
|
328 |
+
num_steps = num_steps or self.num_steps
|
329 |
+
assert num_steps is not None, "num_steps must be specified"
|
330 |
+
sigmas = self.discretization(num_steps, device=self.device)
|
331 |
+
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
332 |
+
num_sigmas = len(sigmas)
|
333 |
+
s_in = x.new_ones([x.shape[0]])
|
334 |
+
return x, s_in, sigmas, num_sigmas, cond, uc
|
335 |
+
|
336 |
+
def get_sigma_gen(self, num_sigmas: int, verbose: bool = True) -> range | tqdm:
|
337 |
+
sigma_generator = range(num_sigmas - 1)
|
338 |
+
if self.verbose and verbose:
|
339 |
+
sigma_generator = tqdm(
|
340 |
+
sigma_generator,
|
341 |
+
total=num_sigmas - 1,
|
342 |
+
desc="Sampling",
|
343 |
+
leave=False,
|
344 |
+
)
|
345 |
+
return sigma_generator
|
346 |
+
|
347 |
+
def sampler_step(
|
348 |
+
self,
|
349 |
+
sigma: torch.Tensor,
|
350 |
+
next_sigma: torch.Tensor,
|
351 |
+
denoiser,
|
352 |
+
x: torch.Tensor,
|
353 |
+
scale: float | torch.Tensor,
|
354 |
+
cond: dict,
|
355 |
+
uc: dict,
|
356 |
+
gamma: float = 0.0,
|
357 |
+
**guider_kwargs,
|
358 |
+
) -> torch.Tensor:
|
359 |
+
sigma_hat = sigma * (gamma + 1.0) + 1e-6
|
360 |
+
|
361 |
+
eps = torch.randn_like(x) * self.s_noise
|
362 |
+
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
|
363 |
+
|
364 |
+
denoised = denoiser(*self.guider.prepare_inputs(x, sigma_hat, cond, uc))
|
365 |
+
denoised = self.guider(denoised, sigma_hat, scale, **guider_kwargs)
|
366 |
+
d = to_d(x, sigma_hat, denoised)
|
367 |
+
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
368 |
+
return x + dt * d
|
369 |
+
|
370 |
+
def __call__(
|
371 |
+
self,
|
372 |
+
denoiser,
|
373 |
+
x: torch.Tensor,
|
374 |
+
scale: float | torch.Tensor,
|
375 |
+
cond: dict,
|
376 |
+
uc: dict | None = None,
|
377 |
+
num_steps: int | None = None,
|
378 |
+
verbose: bool = True,
|
379 |
+
**guider_kwargs,
|
380 |
+
) -> torch.Tensor:
|
381 |
+
uc = cond if uc is None else uc
|
382 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
383 |
+
x,
|
384 |
+
cond,
|
385 |
+
uc,
|
386 |
+
num_steps,
|
387 |
+
)
|
388 |
+
for i in self.get_sigma_gen(num_sigmas, verbose=verbose):
|
389 |
+
gamma = (
|
390 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
391 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
392 |
+
else 0.0
|
393 |
+
)
|
394 |
+
x = self.sampler_step(
|
395 |
+
s_in * sigmas[i],
|
396 |
+
s_in * sigmas[i + 1],
|
397 |
+
denoiser,
|
398 |
+
x,
|
399 |
+
scale,
|
400 |
+
cond,
|
401 |
+
uc,
|
402 |
+
gamma,
|
403 |
+
**guider_kwargs,
|
404 |
+
)
|
405 |
+
return x
|
seva/utils.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import safetensors.torch
|
4 |
+
import torch
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
from seva.model import Seva, SevaParams
|
8 |
+
|
9 |
+
|
10 |
+
def seed_everything(seed: int = 0):
|
11 |
+
torch.manual_seed(seed)
|
12 |
+
torch.cuda.manual_seed(seed)
|
13 |
+
torch.cuda.manual_seed_all(seed)
|
14 |
+
torch.backends.cudnn.deterministic = True
|
15 |
+
torch.backends.cudnn.benchmark = False
|
16 |
+
|
17 |
+
|
18 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
19 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
20 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
21 |
+
print("\n" + "-" * 79 + "\n")
|
22 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
23 |
+
elif len(missing) > 0:
|
24 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
25 |
+
elif len(unexpected) > 0:
|
26 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
27 |
+
|
28 |
+
|
29 |
+
def load_model(
|
30 |
+
pretrained_model_name_or_path: str = "stabilityai/stable-virtual-camera",
|
31 |
+
weight_name: str = "model.safetensors",
|
32 |
+
device: str | torch.device = "cuda",
|
33 |
+
verbose: bool = False,
|
34 |
+
) -> Seva:
|
35 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
36 |
+
weight_path = os.path.join(pretrained_model_name_or_path, weight_name)
|
37 |
+
else:
|
38 |
+
weight_path = hf_hub_download(
|
39 |
+
repo_id=pretrained_model_name_or_path, filename=weight_name
|
40 |
+
)
|
41 |
+
_ = hf_hub_download(
|
42 |
+
repo_id=pretrained_model_name_or_path, filename="config.yaml"
|
43 |
+
)
|
44 |
+
|
45 |
+
state_dict = safetensors.torch.load_file(
|
46 |
+
weight_path,
|
47 |
+
device=str(device),
|
48 |
+
)
|
49 |
+
|
50 |
+
with torch.device("meta"):
|
51 |
+
model = Seva(SevaParams()).to(torch.bfloat16)
|
52 |
+
|
53 |
+
missing, unexpected = model.load_state_dict(state_dict, strict=False, assign=True)
|
54 |
+
if verbose:
|
55 |
+
print_load_warning(missing, unexpected)
|
56 |
+
return model
|
third_party/dust3r
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 44b87f5a466ec32435036e40125d0b87a5746c20
|