Spaces:
Running
on
L4
Running
on
L4
| import os | |
| from typing import Any, Union | |
| import numpy as np | |
| import rembg | |
| import torch | |
| import torchvision.transforms.functional as torchvision_F | |
| from PIL import Image | |
| import sf3d.models.utils as sf3d_utils | |
| def get_device(): | |
| if os.environ.get("SF3D_USE_CPU", "0") == "1": | |
| return "cpu" | |
| device = "cpu" | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| elif torch.backends.mps.is_available(): | |
| device = "mps" | |
| return device | |
| def create_intrinsic_from_fov_deg(fov_deg: float, cond_height: int, cond_width: int): | |
| intrinsic = sf3d_utils.get_intrinsic_from_fov( | |
| np.deg2rad(fov_deg), | |
| H=cond_height, | |
| W=cond_width, | |
| ) | |
| intrinsic_normed_cond = intrinsic.clone() | |
| intrinsic_normed_cond[..., 0, 2] /= cond_width | |
| intrinsic_normed_cond[..., 1, 2] /= cond_height | |
| intrinsic_normed_cond[..., 0, 0] /= cond_width | |
| intrinsic_normed_cond[..., 1, 1] /= cond_height | |
| return intrinsic, intrinsic_normed_cond | |
| def default_cond_c2w(distance: float): | |
| c2w_cond = torch.as_tensor( | |
| [ | |
| [0, 0, 1, distance], | |
| [1, 0, 0, 0], | |
| [0, 1, 0, 0], | |
| [0, 0, 0, 1], | |
| ] | |
| ).float() | |
| return c2w_cond | |
| def remove_background( | |
| image: Image, | |
| rembg_session: Any = None, | |
| force: bool = False, | |
| **rembg_kwargs, | |
| ) -> Image: | |
| do_remove = True | |
| if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
| do_remove = False | |
| do_remove = do_remove or force | |
| if do_remove: | |
| image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
| return image | |
| def get_1d_bounds(arr): | |
| nz = np.flatnonzero(arr) | |
| return nz[0], nz[-1] | |
| def get_bbox_from_mask(mask, thr=0.5): | |
| masks_for_box = (mask > thr).astype(np.float32) | |
| assert masks_for_box.sum() > 0, "Empty mask!" | |
| x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2)) | |
| y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1)) | |
| return x0, y0, x1, y1 | |
| def resize_foreground( | |
| image: Union[Image.Image, np.ndarray], | |
| ratio: float, | |
| out_size=None, | |
| ) -> Image: | |
| if isinstance(image, np.ndarray): | |
| image = Image.fromarray(image, mode="RGBA") | |
| assert image.mode == "RGBA" | |
| # Get bounding box | |
| mask_np = np.array(image)[:, :, -1] | |
| x1, y1, x2, y2 = get_bbox_from_mask(mask_np, thr=0.5) | |
| h, w = y2 - y1, x2 - x1 | |
| yc, xc = (y1 + y2) / 2, (x1 + x2) / 2 | |
| scale = max(h, w) / ratio | |
| new_image = torchvision_F.crop( | |
| image, | |
| top=int(yc - scale / 2), | |
| left=int(xc - scale / 2), | |
| height=int(scale), | |
| width=int(scale), | |
| ) | |
| if out_size is not None: | |
| new_image = new_image.resize(out_size) | |
| return new_image | |