Spaces:
Running
on
L4
Running
on
L4
File size: 2,697 Bytes
77d8010 d945eeb 77d8010 d945eeb 77d8010 d945eeb 77d8010 d945eeb 77d8010 d945eeb 77d8010 d945eeb 77d8010 d945eeb 77d8010 d945eeb 77d8010 d945eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import os
from typing import Any, Union
import numpy as np
import rembg
import torch
import torchvision.transforms.functional as torchvision_F
from PIL import Image
import sf3d.models.utils as sf3d_utils
def get_device():
if os.environ.get("SF3D_USE_CPU", "0") == "1":
return "cpu"
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
return device
def create_intrinsic_from_fov_deg(fov_deg: float, cond_height: int, cond_width: int):
intrinsic = sf3d_utils.get_intrinsic_from_fov(
np.deg2rad(fov_deg),
H=cond_height,
W=cond_width,
)
intrinsic_normed_cond = intrinsic.clone()
intrinsic_normed_cond[..., 0, 2] /= cond_width
intrinsic_normed_cond[..., 1, 2] /= cond_height
intrinsic_normed_cond[..., 0, 0] /= cond_width
intrinsic_normed_cond[..., 1, 1] /= cond_height
return intrinsic, intrinsic_normed_cond
def default_cond_c2w(distance: float):
c2w_cond = torch.as_tensor(
[
[0, 0, 1, distance],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
]
).float()
return c2w_cond
def remove_background(
image: Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def get_1d_bounds(arr):
nz = np.flatnonzero(arr)
return nz[0], nz[-1]
def get_bbox_from_mask(mask, thr=0.5):
masks_for_box = (mask > thr).astype(np.float32)
assert masks_for_box.sum() > 0, "Empty mask!"
x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2))
y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1))
return x0, y0, x1, y1
def resize_foreground(
image: Union[Image.Image, np.ndarray],
ratio: float,
out_size=None,
) -> Image:
if isinstance(image, np.ndarray):
image = Image.fromarray(image, mode="RGBA")
assert image.mode == "RGBA"
# Get bounding box
mask_np = np.array(image)[:, :, -1]
x1, y1, x2, y2 = get_bbox_from_mask(mask_np, thr=0.5)
h, w = y2 - y1, x2 - x1
yc, xc = (y1 + y2) / 2, (x1 + x2) / 2
scale = max(h, w) / ratio
new_image = torchvision_F.crop(
image,
top=int(yc - scale / 2),
left=int(xc - scale / 2),
height=int(scale),
width=int(scale),
)
if out_size is not None:
new_image = new_image.resize(out_size)
return new_image
|