Spaces:
Runtime error
Runtime error
File size: 5,664 Bytes
b338d19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import random
import gradio as gr
import torch
from diffusers import (
DiffusionPipeline,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
)
from diffusers.utils import make_image_grid
ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/japanese-stable-diffusion-xl",
trust_remote_code=True,
torch_dtype=torch.float16,
use_auth_token=ACCESS_TOKEN
)
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline.to(device)
SCHEDULER_MAPPING = {
"ddim": DDIMScheduler,
"plms": PNDMScheduler,
"lms": LMSDiscreteScheduler,
"euler": EulerDiscreteScheduler,
"euler_ancestral": EulerAncestralDiscreteScheduler,
"dpm_solver++": DPMSolverMultistepScheduler,
"unipc": UniPCMultistepScheduler,
}
noise_scheduler_name = "euler"
SD_XL_BASE_RATIOS = {
"0.5": (704, 1408),
"0.52": (704, 1344),
"0.57": (768, 1344),
"0.6": (768, 1280),
"0.68": (832, 1216),
"0.72": (832, 1152),
"0.78": (896, 1152),
"0.82": (896, 1088),
"0.88": (960, 1088),
"0.94": (960, 1024),
"1.0": (1024, 1024),
"1.07": (1024, 960),
"1.13": (1088, 960),
"1.21": (1088, 896),
"1.29": (1152, 896),
"1.38": (1152, 832),
"1.46": (1216, 832),
"1.67": (1280, 768),
"1.75": (1344, 768),
"1.91": (1344, 704),
"2.0": (1408, 704),
"2.09": (1472, 704),
"2.4": (1536, 640),
"2.5": (1600, 640),
"2.89": (1664, 576),
"3.0": (1728, 576),
# "small": (512, 512), # for testing
}
def set_noise_scheduler(name) -> None:
pipeline.scheduler = SCHEDULER_MAPPING[name].from_config(pipeline.scheduler.config)
def infer(
prompt,
scale=7.5,
steps=40,
ratio="1.0",
n_samples=1,
seed="random",
negative_prompt="",
scheduler_name="euler",
):
global noise_scheduler_name
if noise_scheduler_name != scheduler_name:
set_noise_scheduler(scheduler_name)
noise_scheduler_name = scheduler_name
scale = float(scale)
steps = int(steps)
W, H = SD_XL_BASE_RATIOS[ratio]
n_samples = int(n_samples)
if seed == "random":
seed = random.randint(0, 2**32)
seed = int(seed)
images = pipeline(
prompt=prompt,
negative_prompt=negative_prompt if len(negative_prompt) > 0 else None,
guidance_scale=scale,
generator=torch.Generator(device=device).manual_seed(seed),
num_images_per_prompt=n_samples,
num_inference_steps=steps,
height=H,
width=W,
).images
# grid = make_image_grid(images, 1, len(images))
return (
images,
{
"seed": seed,
},
)
examples = [
["柴犬、カラフルアート"],
["満面の笑みのお爺さん、スケッチ"],
["星空の中の1匹の鹿、アート"],
["ジャングルに立っている日本男性のポートレート"],
["茶色の猫のイラスト、アニメ"],
["舞妓さんのポートレート、デジタルアート"],
]
with gr.Blocks() as demo:
gr.Markdown("# Japanese Stable Diffusion XL Demo")
gr.Markdown(
"""[Japanese Stable Diffusion XL](https://huggingface.co/stabilityai/japanese-stable-diffusion-xl) is a Japanese-version SDXL by [Stability AI](https://ja.stability.ai/).
- Blog: https://ja.stability.ai/blog/japanese-stable-diffusion-xl
- Twitter: https://twitter.com/StabilityAI_JP
- Discord: https://discord.com/invite/StableJP"""
)
gr.Markdown(
"### You can also try JSDXL on Google Colab [here](https://colab.research.google.com/github/Stability-AI/model-demo-notebooks/blob/main/japanese_stable_diffusion_xl.ipynb). "
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="prompt",
max_lines=1,
show_label=False,
placeholder="Enter your prompt",
container=False,
)
btn = gr.Button("Run", scale=0)
gallery = gr.Gallery(label="Generated images", show_label=False)
with gr.Accordion(label="sampling info", open=False):
info = gr.JSON(label="sampling_info")
with gr.Accordion(open=False, label="Advanced options"):
scale = gr.Number(value=7.5, label="cfg_scale")
steps = gr.Number(value=25, label="steps", visible=False)
size_ratio = gr.Dropdown(
choices=list(SD_XL_BASE_RATIOS.keys()),
value="1.0",
label="size ratio",
multiselect=False,
)
n_samples = gr.Slider(
minimum=1,
maximum=3,
value=2,
label="n_samples",
)
seed = gr.Text(
value="random",
label="seed (integer or 'random')",
)
negative_prompt = gr.Textbox(
label="negative prompt",
value="",
)
noise_scheduler = gr.Dropdown(
list(SCHEDULER_MAPPING.keys()), value="euler", visible=False
)
inputs = [
prompt,
scale,
steps,
size_ratio,
n_samples,
seed,
negative_prompt,
noise_scheduler,
]
outputs = [gallery, info]
prompt.submit(infer, inputs=inputs, outputs=outputs)
btn.click(infer, inputs=inputs, outputs=outputs)
gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=infer)
demo.queue().launch(debug=True, share=True, show_error=True) |