Spaces:
Sleeping
Sleeping
File size: 8,149 Bytes
2e3c703 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import os
import tempfile
import base64
from io import BytesIO
from pandasai import SmartDataframe
from langchain_groq.chat_models import ChatGroq
# HARDCODED API KEY - REPLACE WITH YOUR ACTUAL KEY
API_KEY = "gsk_YOUR_ACTUAL_API_KEY_HERE" # Replace with your real API key
# Global variables to store data
current_df = None
llm = None
def initialize_llm():
"""Initialize the Groq LLM"""
global llm
try:
if API_KEY == "gsk_YOUR_ACTUAL_API_KEY_HERE":
return "β Please replace 'gsk_YOUR_ACTUAL_API_KEY_HERE' with your actual Groq API key", None
llm = ChatGroq(
model_name="mixtral-8x7b-32768",
api_key=API_KEY,
temperature=0
)
return "β
Groq LLM initialized successfully", llm
except Exception as e:
return f"β Failed to initialize Groq LLM: {str(e)}", None
def process_csv(file):
"""Process uploaded CSV file"""
global current_df
if file is None:
return "No file uploaded", None, None
try:
# Read the CSV file
current_df = pd.read_csv(file.name)
# Create preview
preview = current_df.head().to_html(classes='table table-striped', table_id='data-preview')
# Create info
info = f"""
**File Info:**
- Shape: {current_df.shape[0]} rows Γ {current_df.shape[1]} columns
- Columns: {', '.join(current_df.columns.tolist())}
"""
return "β
CSV file loaded successfully", preview, info
except Exception as e:
return f"β Error reading CSV: {str(e)}", None, None
def chat_with_data(query):
"""Process user query and return response"""
global current_df, llm
if current_df is None:
return "β Please upload a CSV file first", None
if llm is None:
status, _ = initialize_llm()
if llm is None:
return status, None
if not query.strip():
return "β Please enter a query", None
try:
# Create temporary directory for charts
temp_dir = tempfile.mkdtemp()
# Create SmartDataframe
sdf = SmartDataframe(
current_df,
config={
"llm": llm,
"verbose": True,
"save_charts": True,
"save_charts_path": temp_dir,
"custom_whitelisted_dependencies": ["matplotlib", "seaborn", "plotly"]
}
)
# Process the query
result = sdf.chat(query)
# Handle different types of results
if isinstance(result, str):
# Text response
return f"π’ **Response:**\n{result}", None
elif hasattr(result, 'savefig'):
# Matplotlib figure
try:
# Save figure to bytes
img_buffer = BytesIO()
result.savefig(img_buffer, format='png', dpi=150, bbox_inches='tight')
img_buffer.seek(0)
# Save to temporary file for Gradio
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
with open(temp_file.name, 'wb') as f:
f.write(img_buffer.getvalue())
plt.close(result) # Close the figure to free memory
return "π **Chart Generated:**", temp_file.name
except Exception as chart_error:
return f"β Error saving chart: {str(chart_error)}", None
elif isinstance(result, pd.DataFrame):
# DataFrame result
html_table = result.to_html(classes='table table-striped', max_rows=100)
return f"π **Data Result:**\n{html_table}", None
else:
# Other types of results
return f"π **Result:**\n{str(result)}", None
except Exception as e:
error_msg = f"β Error: {str(e)}"
# Provide specific error guidance
if "403" in str(e):
error_msg += "\n\nπ **403 Forbidden Error** - This usually means:\n"
error_msg += "- Invalid API key\n"
error_msg += "- API key doesn't have permission for this model\n"
error_msg += "- Rate limit exceeded\n"
error_msg += "- Model name is incorrect"
elif "rate limit" in str(e).lower():
error_msg += "\n\nβ° **Rate Limit** - Please wait a moment before trying again"
elif "timeout" in str(e).lower():
error_msg += "\n\nβ±οΈ **Timeout** - The query took too long. Try a simpler request"
return error_msg, None
def get_debug_info():
"""Get debug information"""
if API_KEY and API_KEY != "gsk_YOUR_ACTUAL_API_KEY_HERE":
return f"β
API Key loaded successfully\nKey starts with: {API_KEY[:10]}..."
else:
return "β Replace 'gsk_YOUR_ACTUAL_API_KEY_HERE' with your actual API key"
# Initialize LLM on startup
init_status, _ = initialize_llm()
# Create Gradio interface
with gr.Blocks(title="π CSV Chat with Groq + PandasAI", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Chat with Your CSV using PandasAI + Groq")
with gr.Row():
with gr.Column(scale=2):
# File upload section
gr.Markdown("## π Upload CSV File")
file_input = gr.File(
label="Upload your CSV file",
file_types=[".csv"],
type="filepath"
)
upload_status = gr.Textbox(
label="Upload Status",
interactive=False,
value=init_status
)
# Data preview section
gr.Markdown("## π Data Preview")
data_preview = gr.HTML(label="Data Preview")
data_info = gr.Markdown()
with gr.Column(scale=1):
# Debug and help section
gr.Markdown("## π§ Debug Info")
debug_btn = gr.Button("Show Debug Info")
debug_info = gr.Textbox(label="Debug Information", interactive=False)
gr.Markdown("## π Example Queries")
gr.Markdown("""
- "Show me the first 10 rows"
- "What are the column names?"
- "Create a histogram of [column_name]"
- "Show me the summary statistics"
- "Plot the top 5 values in [column_name]"
- "Create a bar chart showing [column1] vs [column2]"
""")
# Chat section
gr.Markdown("## π¬ Chat with Your Data")
with gr.Row():
query_input = gr.Textbox(
label="Ask a question or request a chart",
placeholder="What would you like to know about your data?",
lines=3,
scale=4
)
submit_btn = gr.Button("Submit Query", variant="primary", scale=1)
# Results section
with gr.Row():
with gr.Column():
response_output = gr.Markdown(label="Response")
with gr.Column():
chart_output = gr.Image(label="Generated Chart", type="filepath")
# Event handlers
file_input.change(
fn=process_csv,
inputs=[file_input],
outputs=[upload_status, data_preview, data_info]
)
debug_btn.click(
fn=get_debug_info,
outputs=[debug_info]
)
submit_btn.click(
fn=chat_with_data,
inputs=[query_input],
outputs=[response_output, chart_output]
)
query_input.submit(
fn=chat_with_data,
inputs=[query_input],
outputs=[response_output, chart_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch(
share=False, # Set to True if you want a public link
debug=True,
show_error=True
) |