import cv2 import streamlit as st import numpy as np from PIL import Image import time # Load the pre-trained Haar Cascade face detector face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # Define a function to detect faces in a frame def detect_faces(frame): # Convert the frame to grayscale (Haar Cascade works on grayscale images) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # Draw rectangles around the faces for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) return frame # Streamlit UI for the app st.title("Real-Time Face Detection") # Create a container for the webcam video feed video_placeholder = st.empty() # Start the webcam feed cap = cv2.VideoCapture(0) # 0 is the default webcam device if not cap.isOpened(): st.error("Error: Could not access the webcam.") else: # Start capturing video frames while True: ret, frame = cap.read() if not ret: st.error("Failed to grab frame.") break # Detect faces in the current frame result_frame = detect_faces(frame) # Convert BGR (OpenCV format) to RGB (for Streamlit display) result_frame_rgb = cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB) # Display the frame in Streamlit (dynamically updating the image) video_placeholder.image(result_frame_rgb, channels="RGB", use_column_width=True) # Add a small delay to control the frame rate (optional) time.sleep(0.03) # This gives roughly 30 FPS # Release the webcam when the stream ends cap.release()