Spaces:
Sleeping
Sleeping
import cv2 | |
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
import time | |
# Load the pre-trained Haar Cascade face detector | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
# Define a function to detect faces in a frame | |
def detect_faces(frame): | |
# Convert the frame to grayscale (Haar Cascade works on grayscale images) | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
# Detect faces in the image | |
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) | |
# Draw rectangles around the faces | |
for (x, y, w, h) in faces: | |
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) | |
return frame | |
# Streamlit UI for the app | |
st.title("Real-Time Face Detection") | |
# Create a container for the webcam video feed | |
video_placeholder = st.empty() | |
# Start the webcam feed | |
cap = cv2.VideoCapture(0) # 0 is the default webcam device | |
if not cap.isOpened(): | |
st.error("Error: Could not access the webcam.") | |
else: | |
# Start capturing video frames | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
st.error("Failed to grab frame.") | |
break | |
# Detect faces in the current frame | |
result_frame = detect_faces(frame) | |
# Convert BGR (OpenCV format) to RGB (for Streamlit display) | |
result_frame_rgb = cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB) | |
# Display the frame in Streamlit (dynamically updating the image) | |
video_placeholder.image(result_frame_rgb, channels="RGB", use_column_width=True) | |
# Add a small delay to control the frame rate (optional) | |
time.sleep(0.03) # This gives roughly 30 FPS | |
# Release the webcam when the stream ends | |
cap.release() | |