|
|
|
"""app |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1XX8pCT291obpzL4fc1vu5L_HTG027lle |
|
""" |
|
import gradio as gr |
|
import datasets |
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification |
|
|
|
dataset = datasets.load_dataset("beans") |
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") |
|
model = AutoModelForImageClassification.from_pretrained("saved_model_files") |
|
|
|
labels = dataset['train'].features['labels'].names |
|
|
|
def classify(im): |
|
features = feature_extractor(im, return_tensors='pt') |
|
with torch.no_grad(): |
|
logits = model(features["pixel_values"])[-1] |
|
probability = torch.nn.functional.softmax(logits, dim=-1) |
|
probs = probability[0].detach().numpy() |
|
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} |
|
return confidences |
|
|
|
interface = gr.Interface(classify, inputs='image', outputs='label', title='Bean plant disease classifier', description='Detect diseases in beans leaves using their images.') |
|
|
|
interface.launch(debug=False) |